Suppr超能文献

机器学习算法在脓毒症预测中的诊断性能:一项更新的荟萃分析。

Diagnostic performance of machine-learning algorithms for sepsis prediction: An updated meta-analysis.

出版信息

Technol Health Care. 2024;32(6):4291-4307. doi: 10.3233/THC-240087.

Abstract

BACKGROUND

Early identification of sepsis has been shown to significantly improve patient prognosis.

OBJECTIVE

Therefore, the aim of this meta-analysis is to systematically evaluate the diagnostic efficacy of machine-learning algorithms for sepsis prediction.

METHODS

Systematic searches were conducted in PubMed, Embase and Cochrane databases, covering literature up to December 2023. The keywords included machine learning, sepsis and prediction. After screening, data were extracted and analysed from studies meeting the inclusion criteria. Key evaluation metrics included sensitivity, specificity and the area under the curve (AUC) for diagnostic accuracy.

RESULTS

The meta-analysis included a total of 21 studies with a data sample size of 4,158,941. Overall, the pooled sensitivity was 0.82 (95% confidence interval [CI] = 0.70-0.90; P< 0.001; I2= 99.7%), the specificity was 0.91 (95% CI = 0.86-0.94; P< 0.001; I2= 99.9%), and the AUC was 0.94 (95% CI = 0.91-0.96). The subgroup analysis revealed that in the emergency department setting (6 studies), the pooled sensitivity was 0.79 (95% CI = 0.68-0.87; P< 0.001; I2= 99.6%), the specificity was 0.94 (95% CI 0.90-0.97; P< 0.001; I2= 99.9%), and the AUC was 0.94 (95% CI = 0.92-0.96). In the Intensive Care Unit setting (11 studies), the sensitivity was 0.91 (95% CI = 0.75-0.97; P< 0.001; I2= 98.3%), the specificity was 0.85 (95% CI = 0.75-0.92; P< 0.001; I2= 99.9%), and the AUC was 0.93 (95% CI = 0.91-0.95). Due to the limited number of studies in the in-hospital and mixed settings (n< 3), no pooled analysis was performed.

CONCLUSION

Machine-learning algorithms have demonstrated excellent diagnostic accuracy in predicting the occurrence of sepsis, showing potential for clinical application.

摘要

背景

早期识别脓毒症已被证明可显著改善患者预后。

目的

因此,本荟萃分析旨在系统评估机器学习算法预测脓毒症的诊断效能。

方法

在 PubMed、Embase 和 Cochrane 数据库中进行系统检索,检索范围涵盖截至 2023 年 12 月的文献。关键词包括机器学习、脓毒症和预测。筛选后,从符合纳入标准的研究中提取和分析数据。主要评估指标包括诊断准确性的敏感度、特异度和曲线下面积(AUC)。

结果

荟萃分析共纳入 21 项研究,数据样本量为 4158941 例。总体而言,合并敏感度为 0.82(95%置信区间[CI]:0.70-0.90;P<0.001;I2=99.7%),特异度为 0.91(95%CI:0.86-0.94;P<0.001;I2=99.9%),AUC 为 0.94(95%CI:0.91-0.96)。亚组分析显示,在急诊科(6 项研究)中,合并敏感度为 0.79(95%CI:0.68-0.87;P<0.001;I2=99.6%),特异度为 0.94(95%CI:0.90-0.97;P<0.001;I2=99.9%),AUC 为 0.94(95%CI:0.92-0.96)。在重症监护病房(11 项研究)中,敏感度为 0.91(95%CI:0.75-0.97;P<0.001;I2=88.3%),特异度为 0.85(95%CI:0.75-0.92;P<0.001;I2=99.9%),AUC 为 0.93(95%CI:0.91-0.95)。由于院内和混合环境下的研究数量有限(n<3),因此未进行汇总分析。

结论

机器学习算法在预测脓毒症发生方面具有出色的诊断准确性,具有潜在的临床应用价值。

相似文献

1
2
Prediction of sepsis patients using machine learning approach: A meta-analysis.
Comput Methods Programs Biomed. 2019 Mar;170:1-9. doi: 10.1016/j.cmpb.2018.12.027. Epub 2018 Dec 26.
3
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy.
Intensive Care Med. 2020 Mar;46(3):383-400. doi: 10.1007/s00134-019-05872-y. Epub 2020 Jan 21.
5
[Accuracy of procalcitonin for diagnosis of sepsis in adults: a Meta-analysis].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015 Sep;27(9):743-9.
7
The predictive effect of different machine learning algorithms for pressure injuries in hospitalized patients: A network meta-analyses.
Heliyon. 2022 Nov 2;8(11):e11361. doi: 10.1016/j.heliyon.2022.e11361. eCollection 2022 Nov.
9
Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysis.
Int J Med Inform. 2023 Sep;177:105151. doi: 10.1016/j.ijmedinf.2023.105151. Epub 2023 Jul 11.
10
Machine learning for the prediction of sepsis-related death: a systematic review and meta-analysis.
BMC Med Inform Decis Mak. 2023 Dec 11;23(1):283. doi: 10.1186/s12911-023-02383-1.

引用本文的文献

本文引用的文献

1
Comorbidity Scores and Machine Learning Methods Can Improve Risk Assessment in Radical Cystectomy for Bladder Cancer.
Bladder Cancer. 2022 Jun 3;8(2):155-163. doi: 10.3233/BLC-211640. eCollection 2022.
5
Critical Device Reliability Assessment in Healthcare Services.
J Healthc Eng. 2023 Feb 20;2023:3136511. doi: 10.1155/2023/3136511. eCollection 2023.
7
Risk Factors for Pediatric Sepsis in the Emergency Department: A Machine Learning Pilot Study.
Pediatr Emerg Care. 2023 Feb 1;39(2):e48-e56. doi: 10.1097/PEC.0000000000002893. Epub 2023 Jan 17.
8
Vital sign-based detection of sepsis in neonates using machine learning.
Acta Paediatr. 2023 Apr;112(4):686-696. doi: 10.1111/apa.16660. Epub 2023 Jan 27.
9
Detection of sepsis using biomarkers based on machine learning.
Bratisl Lek Listy. 2023;124(3):239-250. doi: 10.4149/BLL_2023_037.
10
Using Machine Learning for Dynamic Authentication in Telehealth: A Tutorial.
Sensors (Basel). 2022 Oct 9;22(19):7655. doi: 10.3390/s22197655.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验