Suppr超能文献

合并症评分和机器学习方法可改善膀胱癌根治性膀胱切除术的风险评估。

Comorbidity Scores and Machine Learning Methods Can Improve Risk Assessment in Radical Cystectomy for Bladder Cancer.

作者信息

Wessels Frederik, Bußoff Isabelle, Adam Sophia, Kowalewski Karl-Friedrich, Neuberger Manuel, Nuhn Philipp, Michel Maurice S, Kriegmair Maximilian C

机构信息

Department of Urology and Urological Surgery, University Medical Center Mannheim, Medical Faculty of Heidelberg University, Mannheim, Germany.

Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.

出版信息

Bladder Cancer. 2022 Jun 3;8(2):155-163. doi: 10.3233/BLC-211640. eCollection 2022.

Abstract

BACKGROUND

Pre-operative risk assessment in radical cystectomy (RC) is an ongoing challenge especially in elderly patients.

OBJECTIVE

To evaluate the ability of comorbidity indices and their combination with clinical parameters in machine learning models to predict mortality and morbidity after RC.

METHODS

In 392 patients who underwent open RC, complication and mortality rates were reported. The predictive values of the age-adjusted Charlson Comorbidity index (aCCI), the Elixhauser Index (EI), the Physical Status Classification System (ASA) and Gagne's combined comorbidity Index (GCI) were evaluated using regression analyses. Various machine learning models (Gaussian naïve bayes, logistic regression, neural net, decision tree, random forest) were additionally investigated.

RESULTS

The aCCI, ASA and GCI showed significant results for the prediction of complications (χ = 8.8,  < 0.01, χ = 15.7,  < 0.01 and χ = 4.6,  = 0.03) and mortality (χ = 21.1,  < 0.01, χ = 25.8,  < 0.01 and χ = 2.4,  = 0.04) after RC while the EI showed no significant prediction. However, areas under receiver characteristic curves (AUROCs) revealed good performance only for the prediction of mortality by the aCCI and ASA (0.81 and 0.78, CGI 0.63) while the prediction of complications was poor (aCCI 0.6, ASA 0.63, CGI 0.58). The combination of ASA, age, body mass index and sex in machine learning models showed a better prediction. Gaussian naïve bayes (0.79) and logistic regression (0.76) showed the best performance using a hold-out test set.

CONCLUSIONS

The ASA and aCCI show good prediction of mortality after RC but fail predicting complications accurately. Here, the combination of comorbidity indices and clinical parameters in machine learning models seems promising.

摘要

背景

根治性膀胱切除术(RC)的术前风险评估一直是一项挑战,尤其是在老年患者中。

目的

评估合并症指数及其与临床参数在机器学习模型中预测RC术后死亡率和发病率的能力。

方法

报告了392例行开放性RC患者的并发症和死亡率。使用回归分析评估年龄校正的Charlson合并症指数(aCCI)、Elixhauser指数(EI)、身体状况分类系统(ASA)和加涅合并症综合指数(GCI)的预测价值。此外,还研究了各种机器学习模型(高斯朴素贝叶斯、逻辑回归、神经网络、决策树、随机森林)。

结果

aCCI、ASA和GCI对RC术后并发症(χ = 8.8,P < 0.01,χ = 15.7,P < 0.01和χ = 4.6,P = 0.03)和死亡率(χ = 21.1,P < 0.01,χ = 25.8,P < 0.01和χ = 2.4,P = 0.04)的预测显示出显著结果,而EI未显示出显著预测。然而,受试者工作特征曲线下面积(AUROCs)仅显示aCCI和ASA对死亡率的预测表现良好(分别为0.81和0.78,CGI为0.63),而对并发症的预测较差(aCCI为0.6,ASA为0.63,CGI为0.58)。机器学习模型中ASA、年龄、体重指数和性别的组合显示出更好的预测效果。使用留出测试集时,高斯朴素贝叶斯(0.79)和逻辑回归(0.76)表现最佳。

结论

ASA和aCCI对RC术后死亡率显示出良好的预测,但未能准确预测并发症。在此,机器学习模型中合并症指数与临床参数的组合似乎很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ba/11181714/1e4e740d3bad/blc-8-blc211640-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验