Suppr超能文献

人工智能技术支持下的心理咨询经验。

Experience in psychological counseling supported by artificial intelligence technology.

出版信息

Technol Health Care. 2024;32(6):3871-3888. doi: 10.3233/THC-230809.

Abstract

BACKGROUND

In recent years, artificial intelligence (AI) technology has been continuously advancing and finding extensive applications, with one of its core technologies, machine learning, being increasingly utilized in the field of healthcare.

OBJECTIVE

This research aims to explore the role of Artificial Intelligence (AI) technology in psychological counseling and utilize machine learning algorithms to predict counseling outcomes.

METHODS

Firstly, by employing natural language processing techniques to analyze user conversations with AI chatbots, researchers can gain insights into the psychological states and needs of users during the counseling process. This involves detailed analysis using text analysis, sentiment analysis, and other relevant techniques. Subsequently, machine learning algorithms are used to establish predictive models that forecast counseling outcomes and user satisfaction based on data such as user language, emotions, and behavior. These predictive results can assist counselors or AI chatbots in adjusting counseling strategies, thereby enhancing counseling effectiveness and user experience. Additionally, this study explores the potential and prospects of AI technology in the field of psychological counseling.

RESULTS

The research findings indicate that the designed machine learning models achieve an accuracy rate of approximately 89% in analyzing psychological conditions. This demonstrates significant innovation and breakthroughs in AI technology. Consequently, AI technology will gradually become a highly important tool and method in the field of psychological counseling.

CONCLUSION

In the future, AI chatbots will become more intelligent and personalized, providing users with precise, efficient, and convenient psychological counseling services. The results of this research provide valuable technical insights for further improving AI-supported psychological counseling, contributing positively to the application and development of AI technology.

摘要

背景

近年来,人工智能(AI)技术不断进步,得到广泛应用,其核心技术之一机器学习在医疗保健领域的应用越来越多。

目的

本研究旨在探讨人工智能(AI)技术在心理咨询中的作用,并利用机器学习算法预测咨询结果。

方法

首先,通过使用自然语言处理技术分析用户与 AI 聊天机器人的对话,研究人员可以深入了解用户在咨询过程中的心理状态和需求。这涉及使用文本分析、情感分析和其他相关技术进行详细分析。然后,使用机器学习算法根据用户语言、情感和行为等数据建立预测模型,预测咨询结果和用户满意度。这些预测结果可以帮助咨询师或 AI 聊天机器人调整咨询策略,从而提高咨询效果和用户体验。此外,本研究还探讨了 AI 技术在心理咨询领域的潜力和前景。

结果

研究结果表明,设计的机器学习模型在分析心理状况方面的准确率约为 89%。这表明 AI 技术取得了重大的创新和突破。因此,AI 技术将逐渐成为心理咨询领域的重要工具和方法。

结论

未来,AI 聊天机器人将变得更加智能和个性化,为用户提供精确、高效、便捷的心理咨询服务。本研究的结果为进一步改进 AI 支持的心理咨询提供了有价值的技术见解,为 AI 技术的应用和发展做出了积极贡献。

相似文献

1
Experience in psychological counseling supported by artificial intelligence technology.
Technol Health Care. 2024;32(6):3871-3888. doi: 10.3233/THC-230809.
3
[Subverting the Future of Teaching: Artificial Intelligence Innovation in Nursing Education].
Hu Li Za Zhi. 2024 Apr;71(2):20-25. doi: 10.6224/JN.202404_71(2).04.
6
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.
7
A systematic review of artificial intelligence-powered (AI-powered) chatbot intervention for managing chronic illness.
Ann Med. 2024 Dec;56(1):2302980. doi: 10.1080/07853890.2024.2302980. Epub 2024 Mar 11.
8
A roadmap to artificial intelligence (AI): Methods for designing and building AI ready data to promote fairness.
J Biomed Inform. 2024 Jun;154:104654. doi: 10.1016/j.jbi.2024.104654. Epub 2024 May 11.
10

本文引用的文献

2
Does cannabidiol make cannabis safer? A randomised, double-blind, cross-over trial of cannabis with four different CBD:THC ratios.
Neuropsychopharmacology. 2023 May;48(6):869-876. doi: 10.1038/s41386-022-01478-z. Epub 2022 Nov 16.
3
Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis.
Psychol Med. 2021 Dec;51(16):2742-2751. doi: 10.1017/S0033291721003871. Epub 2021 Oct 12.
4
Predicting patients who will drop out of out-patient psychotherapy using machine learning algorithms.
Br J Psychiatry. 2022 Apr;220(4):192-201. doi: 10.1192/bjp.2022.17. Epub 2022 Feb 18.
5
Towards identifying cancer patients at risk to miss out on psycho-oncological treatment via machine learning.
Eur J Cancer Care (Engl). 2022 Mar;31(2):e13555. doi: 10.1111/ecc.13555. Epub 2022 Feb 9.
6
Monitoring of COVID-19 pandemic-related psychopathology using machine learning.
Acta Neuropsychiatr. 2022 Jun;34(3):148-152. doi: 10.1017/neu.2022.2. Epub 2022 Jan 19.
9
Facial Emotion Recognition Predicts Alexithymia Using Machine Learning.
Comput Intell Neurosci. 2021 Sep 28;2021:2053795. doi: 10.1155/2021/2053795. eCollection 2021.
10
An Ontology-Based Framework for Psychological Monitoring in Education During the COVID-19 Pandemic.
Front Psychol. 2021 Jul 22;12:673586. doi: 10.3389/fpsyg.2021.673586. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验