Doctoral Student, Faculty of Nursing, Universitas Indonesia, Depok, Indonesia.
Departement of Nursing, Faculty of Health, Universitas Aisyah Pringsewu, Kabupaten Pringsewu, Indonesia.
Ann Med. 2024 Dec;56(1):2302980. doi: 10.1080/07853890.2024.2302980. Epub 2024 Mar 11.
BACKGROUND: Utilizing artificial intelligence (AI) in chatbots, especially for chronic diseases, has become increasingly prevalent. These AI-powered chatbots serve as crucial tools for enhancing patient communication, addressing the rising prevalence of chronic conditions, and meeting the growing demand for supportive healthcare applications. However, there is a notable gap in comprehensive reviews evaluating the impact of AI-powered chatbot interventions in healthcare within academic literature. This study aimed to assess user satisfaction, intervention efficacy, and the specific characteristics and AI architectures of chatbot systems designed for chronic diseases. METHOD: A thorough exploration of the existing literature was undertaken by employing diverse databases such as PubMed MEDLINE, CINAHL, EMBASE, PsycINFO, ACM Digital Library and Scopus. The studies incorporated in this analysis encompassed primary research that employed chatbots or other forms of AI architecture in the context of preventing, treating or rehabilitating chronic diseases. The assessment of bias risk was conducted using Risk of 2.0 Tools. RESULTS: Seven hundred and eighty-four results were obtained, and subsequently, eight studies were found to align with the inclusion criteria. The intervention methods encompassed health education ( = 3), behaviour change theory ( = 1), stress and coping ( = 1), cognitive behavioural therapy ( = 2) and self-care behaviour ( = 1). The research provided valuable insights into the effectiveness and user-friendliness of AI-powered chatbots in handling various chronic conditions. Overall, users showed favourable acceptance of these chatbots for self-managing chronic illnesses. CONCLUSIONS: The reviewed studies suggest promising acceptance of AI-powered chatbots for self-managing chronic conditions. However, limited evidence on their efficacy due to insufficient technical documentation calls for future studies to provide detailed descriptions and prioritize patient safety. These chatbots employ natural language processing and multimodal interaction. Subsequent research should focus on evidence-based evaluations, facilitating comparisons across diverse chronic health conditions.
背景:在聊天机器人中利用人工智能(AI),特别是针对慢性病,已经变得越来越普遍。这些人工智能驱动的聊天机器人是增强医患沟通的重要工具,可以应对慢性病发病率的上升,满足对支持性医疗保健应用不断增长的需求。然而,在学术文献中,全面评估 AI 驱动的聊天机器人干预措施对医疗保健影响的综述相对较少。本研究旨在评估用户满意度、干预效果以及专为慢性病设计的聊天机器人系统的特定特征和 AI 架构。
方法:通过使用 PubMed MEDLINE、CINAHL、EMBASE、PsycINFO、ACM 数字图书馆和 Scopus 等多种数据库,对现有文献进行了深入探讨。本分析纳入的研究包括使用聊天机器人或其他形式的 AI 架构来预防、治疗或康复慢性病的原始研究。使用 Risk of 2.0 Tools 评估偏倚风险。
结果:共获得 784 项结果,随后发现有 8 项研究符合纳入标准。干预方法包括健康教育(=3)、行为改变理论(=1)、压力和应对(=1)、认知行为疗法(=2)和自我保健行为(=1)。研究提供了关于 AI 驱动的聊天机器人在处理各种慢性病方面的有效性和用户友好性的有价值的见解。总体而言,用户对这些聊天机器人用于自我管理慢性病的接受度较高。
结论:综述研究表明,AI 驱动的聊天机器人用于自我管理慢性病的接受度较高。然而,由于技术文档不足,关于其疗效的证据有限,因此需要未来的研究提供详细的描述并优先考虑患者安全。这些聊天机器人采用自然语言处理和多模态交互。未来的研究应侧重于基于证据的评估,促进跨多种慢性健康状况的比较。
J Med Internet Res. 2020-9-14
J Med Internet Res. 2023-10-3
J Med Internet Res. 2023-2-24
Int J Behav Nutr Phys Act. 2021-12-11
J Med Internet Res. 2025-8-1
Front Med (Lausanne). 2025-6-4
J Med Internet Res. 2023-2-24
Sensors (Basel). 2022-3-29
Sensors (Basel). 2021-12-17
AMIA Annu Symp Proc. 2020
J Med Syst. 2021-3-15
JAMA. 2020-12-15