Suppr超能文献

GCPDFFNet:用于稻瘟病识别的小目标检测。

GCPDFFNet: Small Object Detection for Rice Blast Recognition.

机构信息

College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Huzhou Institute of Zhejiang University, Huzhou 313000, China.

出版信息

Phytopathology. 2024 Jul;114(7):1490-1501. doi: 10.1094/PHYTO-09-23-0326-R. Epub 2024 Jul 5.

Abstract

Early detection of rice blast disease is pivotal to ensure rice yield. We collected in situ images of rice blast and constructed a rice blast dataset based on variations in lesion shape, size, and color. Given that rice blast lesions are small and typically exhibit round, oval, and fusiform shapes, we proposed a small object detection model named GCPDFFNet (global context-based parallel differentiation feature fusion network) for rice blast recognition. The GCPDFFNet model has three global context feature extraction modules and two parallel differentiation feature fusion modules. The global context modules are employed to focus on the lesion areas; the parallel differentiation feature fusion modules are used to enhance the recognition effect of small-sized lesions. In addition, we proposed the SCYLLA normalized Wasserstein distance loss function, specifically designed to accelerate model convergence and improve the detection accuracy of rice blast disease. Comparative experiments were conducted on the rice blast dataset to evaluate the performance of the model. The proposed GCPDFFNet model outperformed the baseline network CenterNet, with a significant increase in mean average precision from 83.6 to 95.4% on the rice blast test set while maintaining a satisfactory frames per second drop from 147.9 to 122.1. Our results suggest that the GCPDFFNet model can accurately detect in situ rice blast disease while ensuring the inference speed meets the real-time requirements.

摘要

早期检测稻瘟病对于确保水稻产量至关重要。我们采集了稻瘟病的原位图像,并基于病变形状、大小和颜色的变化构建了一个稻瘟病数据集。鉴于稻瘟病病变较小,通常呈现圆形、椭圆形和梭形,我们提出了一种名为 GCPDFFNet(基于全局上下文的并行差异化特征融合网络)的小目标检测模型,用于稻瘟病识别。GCPDFFNet 模型有三个全局上下文特征提取模块和两个并行差异化特征融合模块。全局上下文模块用于关注病变区域;并行差异化特征融合模块用于增强对小尺寸病变的识别效果。此外,我们提出了 SCYLLA 归一化 Wasserstein 距离损失函数,专门用于加速模型收敛并提高稻瘟病检测的准确性。我们在稻瘟病数据集上进行了对比实验,以评估模型的性能。所提出的 GCPDFFNet 模型优于基准网络 CenterNet,在稻瘟病测试集上的平均精度从 83.6%提高到 95.4%,而每秒帧数(fps)从 147.9 下降到 122.1,保持了令人满意的水平。我们的结果表明,GCPDFFNet 模型可以在确保推理速度满足实时要求的同时,准确地检测原位稻瘟病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验