Utomo Nyalaliska W, Hong Shifeng, Sinha Ritwick, Kim Keun-Il, Deng Yue, Ochonma Prince, Kitahata Minori G, Garcia-Mendez Regina, Joo Yong L, Archer Lynden A
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Sci Adv. 2024 Jul 5;10(27):eado4719. doi: 10.1126/sciadv.ado4719.
Solid-state electrolytes (SSEs) are challenged by complex interfacial chemistry and poor ion transport through the interfaces they form with battery electrodes. Here, we investigate a class of SSE composed of micrometer-sized lithium oxide (LiO) particles dispersed in a polymerizable 1,3-dioxolane (DOL) liquid. Ring-opening polymerization (ROP) of the DOL by Lewis acid salts inside a battery cell produces polymer-inorganic hybrid electrolytes with gradient properties on both the particle and battery cell length scales. These electrolytes sustain stable charge-discharge behavior in Li||NCM811 and anode-free Cu||NCM811 electrochemical cells. On the particle length scale, LiO retards ROP, facilitating efficient ion transport in a fluid-like region near the particle surface. On battery cell length scales, gravity-assisted settling creates physical and electrochemical gradients in the hybrid electrolytes. By means of electrochemical and spectroscopic analyses, we find that LiO particles participate in a reversible redox reaction that increases the effective CE in anode-free cells to values approaching 100%, enhancing battery cycle life.
固态电解质(SSEs)面临着复杂的界面化学以及通过它们与电池电极形成的界面进行离子传输较差的挑战。在此,我们研究了一类由分散在可聚合的1,3 - 二氧戊环(DOL)液体中的微米级氧化锂(LiO)颗粒组成的SSE。电池内部的路易斯酸盐引发DOL的开环聚合(ROP),从而产生在颗粒和电池长度尺度上均具有梯度性质的聚合物 - 无机混合电解质。这些电解质在Li||NCM811和无阳极Cu||NCM811电化学电池中维持稳定的充放电行为。在颗粒长度尺度上,LiO会延缓ROP,促进在颗粒表面附近类似流体区域中的高效离子传输。在电池长度尺度上,重力辅助沉降会在混合电解质中产生物理和电化学梯度。通过电化学和光谱分析,我们发现LiO颗粒参与了一个可逆的氧化还原反应,该反应将无阳极电池中的有效库仑效率提高到接近100%的值,从而延长了电池的循环寿命。