Liu Fangqi, Habibollahi Maryam, Wu Yu, Neshatvar Nazanin, Zhang Jiaxing, Zinno Ciro, Akouissi Outman, Bernini Fabio, Alibrandi Lisa, Gabisonia Khatia, Lionetti Vincenzo, Carpaneto Jacopo, Lancashire Henry, Jiang Dai, Micera Silvestro, Demosthenous Andreas
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy.
Bioelectron Med. 2024 Jul 6;10(1):16. doi: 10.1186/s42234-024-00148-3.
Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns.
This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link.
The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation.
The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.
植入式迷走神经刺激是心脏移植后恢复自主心血管功能的一种有前景的方法。为了成功治疗,系统应具备多个电极以提供精确刺激和复杂的神经调节模式。
本文介绍了一种用于猪种迷走神经 - 心脏神经调节研究的植入式多通道刺激系统。该系统包括一个经皮连接到外部可穿戴控制器的有源电极阵列植入物。有源电极阵列植入物有一个集成刺激器专用集成电路(ASIC),安装在陶瓷基板上,通过微铆钉键合连接到神经内电极阵列。植入物采用硅胶封装以实现生物相容性和植入寿命。刺激参数通过蓝牙遥测链路远程传输。
封装后的有源电极阵列植入物尺寸为8毫米×10毫米×3毫米。刺激器ASIC具有10位电流幅度分辨率和16个独立输出通道,每个通道能够提供高达550微安的刺激电流和最大20伏的电压。有源电极阵列植入物在70°C下进行了7天的体外加速寿命测试,性能无下降。经过超过2小时的连续刺激后,植入物的表面温度变化小于0.5°C。此外,在雄性哥廷根小型猪的坐骨神经上进行的体内测试表明,该植入物能够有效引发肌电图(EMG)反应,随着刺激幅度的增加,反应逐渐增强。
该多通道刺激器适用于长期植入。它显示出作为动物模型中迷走神经 - 心脏神经调节研究的有用工具的潜力,用于心脏移植后恢复自主心血管功能。