Ivancevic Marko R, Wisch Jesse A, Burlingame Quinn C, Rand Barry P, Loo Yueh-Lin
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA.
Adv Mater. 2024 Aug;36(35):e2402478. doi: 10.1002/adma.202402478. Epub 2024 Jul 6.
Organic small molecules that exhibit second-scale phosphorescence at room temperature are of interest for potential applications in sensing, anticounterfeiting, and bioimaging. However, such materials systems are uncommon-requiring millisecond to second-scale triplet lifetimes, efficient intersystem crossing, and slow rates of nonradiative recombination. Here, a simple and scalable approach is demonstrated to activate long-lived phosphorescence in a wide variety of molecules by suspending them in rigid polymer hosts and annealing them above the polymer's glass transition temperature. This process produces submicron aggregates of the chromophore, which suppresses intramolecular motion that leads to nonradiative recombination and minimizes triplet-triplet annihilation that quenches phosphorescence in larger aggregates. In some cases, evidence of excimer-mediated intersystem crossing that enhances triplet generation in aggregated chromophores is found. In short, this approach circumvents the current design rules for long-lived phosphors, which will streamline their discovery and development.
在室温下呈现秒级磷光的有机小分子对于传感、防伪和生物成像等潜在应用具有吸引力。然而,这样的材料体系并不常见,需要毫秒到秒级的三重态寿命、高效的系间窜越以及缓慢的非辐射复合速率。在此,展示了一种简单且可扩展的方法,通过将各种分子悬浮在刚性聚合物基质中并在高于聚合物玻璃化转变温度的条件下退火,来激活这些分子中的长寿命磷光。这个过程产生发色团的亚微米聚集体,它抑制了导致非辐射复合的分子内运动,并使在较大聚集体中淬灭磷光的三重态 - 三重态湮灭最小化。在某些情况下,发现了准分子介导的系间窜越的证据,这种窜越增强了聚集发色团中的三重态产生。简而言之,这种方法规避了当前长寿命磷光体的设计规则,这将简化它们的发现和开发过程。