Suppr超能文献

超长有机磷光:从材料设计到应用。

Ultralong Organic Phosphorescence: From Material Design to Applications.

机构信息

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China.

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.

出版信息

Acc Chem Res. 2022 Dec 6;55(23):3445-3459. doi: 10.1021/acs.accounts.2c00514. Epub 2022 Nov 11.

Abstract

Organic phosphorescence is defined as a radiative transition between the different spin multiplicities of an organic molecule after excitation; here, we refer to the photoexcitation. Unlike fluorescence, it shows a long emission lifetime (∼μs), large Stokes shift, and rich excited state properties, attracting considerable attention in organic electronics during the past years. Ultralong organic phosphorescence (UOP), a type of persistent luminescence in organic phosphors, shows an emission lifetime of over 100 ms normally according to the resolution limit of the naked eye. According to the Jablonski energy diagram, two prerequisites are necessary for UOP generation and enhancement. One is to promote intersystem crossing (ISC) of the excitons from the excited singlet to triplet states by enhancing the spin-orbit coupling (SOC); the other is to suppress the nonradiative transitions of the excitons from the excited triplet states.In this Account, we will give a summary of our research on ultralong organic phosphorescence, including the design of materials, manipulation of properties, fabrication of nano/microstructures, and function applications. First, we give a brief introduction to the UOP development. Then, we discuss the constructed methods of UOP materials from the inter/intramolecular interaction types, including π-π interactions, intermolecular hydrogen bonds, halogen bonds, ionic bonds, covalent bonds, and so on. These effective interactions can build a rigid environment to restrain the nonradiative transitions from the molecular motions or external quenching by oxygen, moisture, or heat, and thus enhance the UOP performance. Next, the manipulation of UOP properties, containing excitation wavelength, emission colors, lifetimes, and quantum efficiency (QE), through molecular or crystal engineering will be summarized. Recently, the excitation wavelengths of the materials for UOP can be regulated in different regions, such as UV, visible light, and X-ray; the emission colors of UOP can cover the whole visible-light region, from deep blue to red; the phosphorescence lifetime of UOP materials can reach 2.5 s, and the quantum efficiency can be achieved up to 96.5%. Moreover, we will present the fabrication of micro/nanoscale UOP materials, including the preparation of micro/nanostructure, optical performance, and device fabrication. Afterward, we will review the potential applications of UOP materials in organic/bio-optoelectronics, such as information encryption, bioimaging, sensing, afterglow display, . Finally, an outlook on the development of UOP materials and applications will be proposed.

摘要

有机磷光被定义为有机分子在激发后不同自旋多重态之间的辐射跃迁;这里,我们指的是光激发。与荧光不同,它表现出长的发射寿命(∼μs)、大的斯托克斯位移和丰富的激发态性质,在过去几年中在有机电子学中引起了相当大的关注。超长有机磷光(UOP)是有机磷光体中一种持久发光类型,通常根据肉眼的分辨率极限,其发射寿命超过 100ms。根据 Jablonski 能量图,UOP 的产生和增强需要两个前提条件。一个是通过增强自旋轨道耦合(SOC)促进激子从激发单重态到三重态的系间窜越(ISC);另一个是抑制激子从激发三重态的非辐射跃迁。在本综述中,我们将总结我们在超长有机磷光方面的研究,包括材料设计、性质调控、纳米/微结构制备和功能应用。首先,我们简要介绍 UOP 的发展。然后,我们从分子内/分子间相互作用类型讨论 UOP 材料的构建方法,包括π-π 相互作用、分子间氢键、卤键、离子键、共价键等。这些有效相互作用可以构建刚性环境,抑制分子运动或外部氧、水、热引起的非辐射跃迁,从而增强 UOP 性能。接下来,总结通过分子或晶体工程对 UOP 性质的调控,包括激发波长、发射颜色、寿命和量子效率(QE)。最近,UOP 材料的激发波长可以在不同区域进行调节,如紫外光、可见光和 X 射线;UOP 的发射颜色可以覆盖整个可见光区域,从深蓝色到红色;UOP 材料的磷光寿命可达 2.5s,量子效率可达 96.5%。此外,我们将介绍微/纳尺度 UOP 材料的制备,包括微/纳结构的制备、光学性能和器件制备。之后,我们将回顾 UOP 材料在有机/生物光电子学中的潜在应用,如信息加密、生物成像、传感、余辉显示等。最后,我们将对 UOP 材料的发展和应用进行展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验