Suppr超能文献

持续氧监测增强器官离体机器灌注和重建手术。

Continuous oxygen monitoring to enhance ex-vivo organ machine perfusion and reconstructive surgery.

机构信息

Vascularized Composite Allotransplantation Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, Rennes University, Rennes, 35000, France; Shriners Children's, Boston, 02114, MA, USA; MOBIDIC, UMR1236, INSERM, Rennes University, Rennes, 35000, France.

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain.

出版信息

Biosens Bioelectron. 2024 Oct 15;262:116549. doi: 10.1016/j.bios.2024.116549. Epub 2024 Jul 3.

Abstract

Continuous oxygenation monitoring of machine-perfused organs or transposed autologous tissue is not currently implemented in clinical practice. Oxygenation is a critical parameter that could be used to verify tissue viability and guide corrective interventions, such as perfusion machine parameters or surgical revision. This work presents an innovative technology based on oxygen-sensitive, phosphorescent metalloporphyrin allowing continuous and non-invasive oxygen monitoring of ex-vivo perfused vascularized fasciocutaneous flaps. The method comprises a small, low-energy optical transcutaneous oxygen sensor applied on the flap's skin paddle as well as oxygen sensing devices placed into the tubing. An intermittent perfusion setting was designed to study the response time and accuracy of this technology over a total of 54 perfusion cycles. We further evaluated correlation between the continuous oxygen measurements and gold-standard perfusion viability metrics such as vascular resistance, with good agreement suggesting potential to monitor graft viability at high frequency, opening the possibility to employ feedback control algorithms in the future. This proof-of-concept study opens a range of research and clinical applications in reconstructive surgery and transplantation at a time when perfusion machines undergo rapid clinical adoption with potential to improve outcomes across a variety of surgical procedures and dramatically increase access to transplant medicine.

摘要

目前,在临床实践中,并未对机器灌注器官或移植自体组织进行连续氧合监测。氧合是一个关键参数,可用于验证组织活力,并指导纠正干预措施,如灌注机参数或手术修正。本工作提出了一种基于氧敏、磷光金属卟啉的创新技术,可对离体灌注血管化筋膜皮瓣进行连续、非侵入性的氧监测。该方法包括一个小型、低能量的经皮氧传感器,应用于皮瓣的皮肤叶片上,以及放置在管中的氧传感装置。设计了间歇灌注设置,以在总共 54 个灌注循环中研究该技术的响应时间和准确性。我们进一步评估了连续氧测量与金标准灌注活力指标(如血管阻力)之间的相关性,良好的一致性表明有潜力以高频率监测移植物活力,未来有可能采用反馈控制算法。这项概念验证研究为重建外科和移植领域的一系列研究和临床应用开辟了道路,此时灌注机正在快速临床应用,有可能改善各种手术程序的结果,并极大地增加移植医学的可及性。

相似文献

1
Continuous oxygen monitoring to enhance ex-vivo organ machine perfusion and reconstructive surgery.
Biosens Bioelectron. 2024 Oct 15;262:116549. doi: 10.1016/j.bios.2024.116549. Epub 2024 Jul 3.
2
Towards Optimizing Sub-Normothermic Machine Perfusion in Fasciocutaneous Flaps: A Large Animal Study.
Bioengineering (Basel). 2023 Dec 12;10(12):1415. doi: 10.3390/bioengineering10121415.
3
Simple, fast and reliable perfusion monitoring of microvascular flaps.
Clin Hemorheol Microcirc. 2012;50(1-2):13-24. doi: 10.3233/CH-2011-1439.
5
Tissue-Integrating Oxygen Sensors: Continuous Tracking of Tissue Hypoxia.
Adv Exp Med Biol. 2017;977:377-383. doi: 10.1007/978-3-319-55231-6_49.
6
Versatile, in-line optical oxygen tension sensors for continuous monitoring during kidney perfusion.
Sens Diagn. 2024 Feb 27;3(6):1014-1019. doi: 10.1039/d3sd00240c. eCollection 2024 Jun 13.

引用本文的文献

1
A Guide to the Implementation and Design of Ex Vivo Perfusion Machines for Vascularized Composite Allotransplantation.
Plast Reconstr Surg Glob Open. 2025 Mar 14;13(3):e6624. doi: 10.1097/GOX.0000000000006624. eCollection 2025 Mar.
2
Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair.
Adv Sci (Weinh). 2025 Jun;12(24):e2409884. doi: 10.1002/advs.202409884. Epub 2024 Dec 16.

本文引用的文献

1
Versatile, in-line optical oxygen tension sensors for continuous monitoring during kidney perfusion.
Sens Diagn. 2024 Feb 27;3(6):1014-1019. doi: 10.1039/d3sd00240c. eCollection 2024 Jun 13.
2
Advancements in Airborne Viral Nucleic Acid Detection with Wearable Devices.
Adv Sens Res. 2024 Mar;3(3). doi: 10.1002/adsr.202300061. Epub 2023 Jul 13.
4
Calculation of Tissue Oxygenation via an Inverse Boundary Problem for Transcutaneous Oxygenation Wearable Applications.
ACS Meas Sci Au. 2023 May 2;3(4):269-276. doi: 10.1021/acsmeasuresciau.3c00013. eCollection 2023 Aug 16.
5
A National Survey of Perspectives of Physician Assistants in Academic Plastic and Reconstructive Surgery.
Plast Reconstr Surg Glob Open. 2023 May 22;11(5):e4989. doi: 10.1097/GOX.0000000000004989. eCollection 2023 May.
6
Microvascular assessment of fascio-cutaneous flaps by ultrasound: A large animal study.
Front Physiol. 2022 Dec 15;13:1063240. doi: 10.3389/fphys.2022.1063240. eCollection 2022.
7
Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for delivery.
Front Immunol. 2022 Oct 19;13:1000172. doi: 10.3389/fimmu.2022.1000172. eCollection 2022.
8
Phosphorescent Microneedle Array for the Measurement of Oxygen Partial Pressure in Tissue.
ACS Sens. 2022 Nov 25;7(11):3440-3449. doi: 10.1021/acssensors.2c01775. Epub 2022 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验