Suppr超能文献

利用数据驱动的深度学习方法在混合传染病建模中的应用。

Leveraging advances in data-driven deep learning methods for hybrid epidemic modeling.

机构信息

Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States.

Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States.

出版信息

Epidemics. 2024 Sep;48:100782. doi: 10.1016/j.epidem.2024.100782. Epub 2024 Jun 24.

Abstract

Mathematical modeling of epidemic dynamics is crucial to understand its underlying mechanisms, quantify important parameters, and make predictions that facilitate more informed decision-making. There are three major types of models: mechanistic models including the SEIR-type paradigm, alternative data-driven (DD) approaches, and hybrid models that combine mechanistic models with DD approaches. In this paper, we summarize our work in the COVID-19 Scenario Modeling Hub (SMH) for more than 12 rounds since early 2021 for informed decision support. We emphasize the importance of deep learning techniques for epidemic modeling via a flexible DD framework that substantially complements the mechanistic paradigm to evaluate various future epidemic scenarios. We start with a traditional curve-fitting approach to model cumulative COVID-19 based on the underlying SEIR-type mechanisms. Hospitalizations and deaths are modeled as binomial processes of cases and hospitalization, respectively. We further formulate two types of deep learning models based on multivariate long short term memory (LSTM) to address the challenges of more traditional DD models. The first LSTM is structurally similar to the curve fitting approach and assumes that hospitalizations and deaths are binomial processes of cases. Instead of using a predefined exponential curve, LSTM relies on the underlying data to identify the most appropriate functions, and is capable of capturing both long-term and short-term epidemic behaviors. We then relax the assumption of dependent inputs among cases, hospitalizations, and death. Another type of LSTM that handles all input time series as parallel signals, the independent multivariate LSTM, is developed. Independent multivariate LSTM can incorporate a wide range of data sources beyond traditional case-based epidemiological surveillance. The DD framework unleashes its potential in big data era with previously neglected heterogeneous surveillance data sources, such as syndromic, environment, genomic, serologic, infoveillance, and mobility data. DD approaches, especially LSTM, complement and integrate with the mechanistic modeling paradigm, provide a feasible alternative approach to model today's complex socio-epidemiological systems, and further leverage our ability to explore different scenarios for more informed decision-making during health emergencies.

摘要

摘要:为了理解疾病动力学的基本机制、量化重要参数并做出有助于更明智决策的预测,对疾病进行数学建模至关重要。主要有三种模型类型:包括 SEIR 型范例的机械模型、替代数据驱动(DD)方法以及将机械模型与 DD 方法相结合的混合模型。本文总结了自 2021 年初以来我们在 COVID-19 情景建模中心(SMH)的工作,以支持知情决策。我们强调了深度学习技术在通过灵活的 DD 框架进行疾病建模方面的重要性,该框架极大地补充了机械范例,以评估各种未来的疾病情景。我们首先采用传统的曲线拟合方法基于潜在的 SEIR 型机制来构建累积 COVID-19 模型。住院和死亡分别建模为病例和住院的二项式过程。我们进一步基于多元长短期记忆(LSTM)构建了两种类型的深度学习模型,以解决更传统的 DD 模型的挑战。第一种 LSTM 在结构上与曲线拟合方法相似,并假设住院和死亡是病例的二项式过程。LSTM 不使用预定义的指数曲线,而是依赖于基础数据来识别最合适的函数,并能够捕捉长期和短期的疾病流行行为。然后,我们放宽了对病例、住院和死亡之间输入的相关性的假设。另一种 LSTM 类型,独立多元 LSTM,处理所有输入时间序列作为并行信号。独立多元 LSTM 可以整合广泛的数据来源,而不仅仅是传统的基于病例的流行病学监测数据。DD 框架在大数据时代释放了其潜力,利用了以前被忽视的异质监测数据源,如综合征、环境、基因组、血清学、信息监测和流动性数据。DD 方法,特别是 LSTM,补充和整合了机械建模范例,为当今复杂的社会流行病学系统提供了可行的替代建模方法,并进一步提高了我们在卫生紧急情况下探索不同情景以做出更明智决策的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验