Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
Metab Eng. 2024 Sep;85:14-25. doi: 10.1016/j.ymben.2024.07.002. Epub 2024 Jul 4.
Indigo is widely used in textile industries for denim garments dyeing and is mainly produced by chemical synthesis which, however, raises environmental sustainability issues. Bio-indigo may be produced by fermentation of metabolically engineering bacteria, but current methods are economically incompetent due to low titer and the need for an inducer. To address these problems, we first characterized several synthetic promoters in E. coli and demonstrated the feasibility of inducer-free indigo production from tryptophan using the inducer-free promoter. We next coupled the tryptophan-to-indigo and glucose-to-tryptophan pathways to generate a de novo glucose-to-indigo pathway. By rational design and combinatorial screening, we identified the optimal promoter-gene combinations, which underscored the importance of promoter choice and expression levels of pathway genes. We thus created a new E. coli strain that exploited an indole pathway to enhance the indigo titer to 123 mg/L. We further assessed a panel of heterologous tryptophan synthase homologs and identified a plant indole lyase (TaIGL), which along with modified pathway design, improved the indigo titer to 235 mg/L while reducing the tryptophan byproduct accumulation. The optimal E. coli strain expressed 8 genes essential for rewiring carbon flux from glucose to indole and then to indigo: mFMO, ppsA, tktA, trpD, trpC, TaIGL and feedback-resistant aroG and trpE. Fed-batch fermentation in a 3-L bioreactor with glucose feeding further increased the indigo titer (≈965 mg/L) and total quantity (≈2183 mg) at 72 h. This new synthetic glucose-to-indigo pathway enables high-titer indigo production without the need of inducer and holds promise for bio-indigo production.
靛蓝被广泛用于牛仔服装的纺织工业染色,主要通过化学合成生产,但这引发了环境可持续性问题。生物靛蓝可以通过代谢工程细菌的发酵生产,但由于产量低和需要诱导剂,目前的方法在经济上不可行。为了解决这些问题,我们首先在大肠杆菌中对几种合成启动子进行了表征,并证明了使用无诱导剂启动子从色氨酸中无诱导剂生产靛蓝的可行性。我们接下来将色氨酸到靛蓝和葡萄糖到色氨酸的途径偶联起来,生成一条从头的葡萄糖到靛蓝的途径。通过合理设计和组合筛选,我们确定了最佳的启动子-基因组合,这强调了启动子选择和途径基因表达水平的重要性。因此,我们创建了一个新的大肠杆菌菌株,利用吲哚途径将靛蓝的产量提高到 123mg/L。我们进一步评估了一组异源色氨酸合酶同源物,并鉴定了一种植物吲哚裂解酶(TaIGL),通过修改途径设计,将靛蓝的产量提高到 235mg/L,同时减少色氨酸副产物的积累。最佳的大肠杆菌菌株表达了 8 个必需的基因,这些基因对于重新布线从葡萄糖到吲哚再到靛蓝的碳通量至关重要:mFMO、ppsA、tktA、trpD、trpC、TaIGL 和反馈抗性 aroG 和 trpE。在 3-L 生物反应器中进行补料分批发酵,用葡萄糖进料进一步提高了靛蓝的产量(≈965mg/L)和总产量(≈2183mg),在 72h 时达到了这一水平。这条新的合成葡萄糖到靛蓝的途径可以在不需要诱导剂的情况下实现高产量的靛蓝生产,为生物靛蓝的生产提供了前景。