Suppr超能文献

利用振动光谱和监督式机器学习对海鸟摄入的塑料进行化学鉴定。

The use of vibrational spectroscopy and supervised machine learning for chemical identification of plastics ingested by seabirds.

作者信息

Razzell Hollis Joseph, Lavers Jennifer L, Bond Alexander L

机构信息

Bird Group, Natural History Museum, Tring, UK.

Bird Group, Natural History Museum, Tring, UK; Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia.

出版信息

J Hazard Mater. 2024 Sep 5;476:134996. doi: 10.1016/j.jhazmat.2024.134996. Epub 2024 Jun 21.

Abstract

Plastic pollution is now ubiquitous in the environment and represents a growing threat to wildlife, who can mistake plastic for food and ingest it. Tackling this problem requires reliable, consistent methods for monitoring plastic pollution ingested by seabirds and other marine fauna, including methods for identifying different types of plastic. This study presents a robust method for the rapid, reliable chemical characterisation of ingested plastics in the 1-50 mm size range using infrared and Raman spectroscopy. We analysed 246 objects ingested by Flesh-footed Shearwaters (Ardenna carneipes) from Lord Howe Island, Australia, and compared the data yielded by each technique: 92 % of ingested objects visually identified as plastic were confirmed by spectroscopy, 98 % of those were low density polymers such as polyethylene, polypropylene, or their copolymers. Ingested plastics exhibit significant spectral evidence of biological contamination compared to other reports, which hinders identification by conventional library searching. Machine learning can be used to identify ingested plastics by their vibrational spectra with up to 93 % accuracy. Overall, we find that infrared is the more effective technique for identifying ingested plastics in this size range, and that appropriately trained machine learning models can be superior to conventional library searching methods for identifying plastics.

摘要

塑料污染如今在环境中无处不在,对野生动物构成了日益严重的威胁,野生动物可能会将塑料误认作食物并摄入。解决这一问题需要可靠、一致的方法来监测海鸟和其他海洋动物摄入的塑料污染,包括识别不同类型塑料的方法。本研究提出了一种强大的方法,可利用红外光谱和拉曼光谱对尺寸在1至50毫米范围内摄入的塑料进行快速、可靠的化学表征。我们分析了来自澳大利亚豪勋爵岛的肉足鹱(Ardenna carneipes)摄入的246个物体,并比较了每种技术产生的数据:在视觉上被确认为塑料的摄入物体中,92%通过光谱学得到证实,其中98%是低密度聚合物,如聚乙烯、聚丙烯或它们的共聚物。与其他报告相比,摄入的塑料显示出明显的生物污染光谱证据,这阻碍了通过传统库检索进行识别。机器学习可用于根据振动光谱识别摄入的塑料,准确率高达93%。总体而言,我们发现红外光谱是识别该尺寸范围内摄入塑料更有效的技术,并且经过适当训练的机器学习模型在识别塑料方面可能优于传统的库检索方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验