Shen Jinglin, Zhou Fengjie, Yu You, Zhang Ensheng, Qi Wei, Zhang Yongjie
School of Chemistry and Chemical Engineering, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, P. R. China.
School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
Chemistry. 2024 Sep 5;30(50):e202401909. doi: 10.1002/chem.202401909. Epub 2024 Aug 19.
Modulating the assembly pathway is an indispensable strategy for optimizing the performance of optical materials. However, implementing this strategy is nontrivial for metal nanocluster building blocks, due to the limited functional modification of nanoclusters and complexity of their emission mechanism. In this report, we demonstrate that a gold nanocluster modified by 4,6-diamino-2-pyrimidinethiol (DPT-AuNCs) self-assembles into two distinct aggregation structures in methanol (MeOH)/water mixed solvent, thus exhibiting pathway complexity. Kinetic studies show that DPT-AuNCs firstly assembles into non-luminescent nanofibers (kinetically controlled), which further transforms into strongly luminescent microflowers (thermodynamically controlled). In-depth analysis of the assembly mechanism reveals that the transformation of aggregation structures involves the disassembly of nanofibers and a subsequent nucleation-growth process. Temperature-dependent photoluminescence (PL) spectroscopy and infrared (IR) measurements reveal that inter-cluster hydrogen bonding bridged by solvent molecules and C-H⋅⋅⋅π interaction are the key factors for emission enhancement. The photoluminescent property of DPT-AuNCs can be controlled by varying the cosolvent in water, enabling DPT-AuNCs to distinguish different kind of alcohols, particularly the isomerism n-propanol (NPA) and isopropanol (IPA). Additionally, the addition of seeds effectively regulate the assembly kinetics of DPT-AuNCs. This study advances our understanding of assembly pathways and improves the luminescent performance of nanoclusters (NCs).
调控组装途径是优化光学材料性能的一项不可或缺的策略。然而,由于纳米团簇的功能修饰有限以及其发光机制的复杂性,对于金属纳米团簇构建单元而言,实施这一策略并非易事。在本报告中,我们证明了由4,6 - 二氨基 - 2 - 嘧啶硫醇修饰的金纳米团簇(DPT - AuNCs)在甲醇(MeOH)/水混合溶剂中自组装成两种不同的聚集结构,从而展现出途径复杂性。动力学研究表明,DPT - AuNCs首先组装成非发光的纳米纤维(动力学控制),其进一步转变为强发光的微花(热力学控制)。对组装机制的深入分析表明,聚集结构的转变涉及纳米纤维的解组装以及随后的成核 - 生长过程。温度依赖的光致发光(PL)光谱和红外(IR)测量表明,由溶剂分子桥连的簇间氢键和C - H⋅⋅⋅π相互作用是发射增强的关键因素。DPT - AuNCs的光致发光性质可通过改变水中的共溶剂来控制,使得DPT - AuNCs能够区分不同种类的醇,特别是正丙醇(NPA)和异丙醇(IPA)的异构体。此外,种子的添加有效地调节了DPT - AuNCs的组装动力学。本研究增进了我们对组装途径的理解,并提高了纳米团簇(NCs)的发光性能。