Sahoo Manaswini, Onuorah Ifeanyi John, Folkers Laura Christina, Kochetkova Ekaterina, Chulkov Evgueni V, Otrokov Mikhail M, Aliev Ziya S, Amiraslanov Imamaddin R, Wolter Anja U B, Büchner Bernd, Corredor Laura Teresa, Wang Chennan, Salman Zaher, Isaeva Anna, De Renzi Roberto, Allodi Giuseppe
Leibniz IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany.
Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062, Dresden, Germany.
Adv Sci (Weinh). 2024 Sep;11(34):e2402753. doi: 10.1002/advs.202402753. Epub 2024 Jul 8.
Magnetic topological insulators (TIs) herald a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBiTe)(BiTe) layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this material platform is enabled by manganese-pnictogen intermixing, whose amounts and distribution patterns are controlled by synthetic conditions. Here, nuclear magnetic resonance and muon spin spectroscopy, sensitive local probe techniques, are employed to scrutinize the impact of the intermixing on the magnetic properties of (MnBiTe)(BiTe) and MnSbTe. The measurements not only confirm the opposite alignment between the Mn magnetic moments on native sites and antisites in the ground state of MnSbTe, but for the first time directly show the same alignment in (MnBiTe)(BiTe) with n = 0, 1 and 2. Moreover, for all compounds, the static magnetic moment of the Mn antisite sublattice is found to disappear well below the intrinsic magnetic transition temperature, leaving a homogeneous magnetic structure undisturbed by the intermixing. The findings provide a microscopic understanding of the crucial role played by Mn-Bi intermixing in (MnBiTe)(BiTe) and offer pathways to optimizing the magnetic gap in its surface states.
磁性拓扑绝缘体(TIs)凭借其拓扑性质所提供的新颖量子现象,在基于自旋的技术中有着广泛的应用前景。特别值得一提的是已确立的本征磁性TIs的(MnBiTe)(BiTe)层状家族,它能够灵活地实现各种磁序和拓扑状态。锰与氮族元素的混合使得这种材料平台具有高度的可调性,其数量和分布模式由合成条件控制。在这里,核磁共振和μ子自旋谱这两种灵敏的局域探测技术被用于仔细研究这种混合对(MnBiTe)(BiTe)和MnSbTe磁性的影响。测量结果不仅证实了在MnSbTe基态下,本征位置和反位上的Mn磁矩呈相反排列,而且首次直接表明在n = 0、1和2的(MnBiTe)(BiTe)中它们呈相同排列。此外,对于所有化合物,发现Mn反位子晶格的静态磁矩在远低于本征磁转变温度时就消失了,从而留下一个不受混合干扰的均匀磁结构。这些发现为理解Mn - Bi混合在(MnBiTe)(BiTe)中所起的关键作用提供了微观视角,并为优化其表面态的磁隙提供了途径。