Suppr超能文献

二维拓扑轴子反铁磁体中的层霍尔效应。

Layer Hall effect in a 2D topological axion antiferromagnet.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nature. 2021 Jul;595(7868):521-525. doi: 10.1038/s41586-021-03679-w. Epub 2021 Jul 21.

Abstract

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBiTe-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBiTe shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

摘要

虽然亚铁磁体已经被人们认识和使用了几千年,但反铁磁体直到 20 世纪 30 年代才被发现。在大规模上,由于缺乏整体磁化,反铁磁体可能表现得像任何非磁性材料一样。然而,在微观层面上,自旋的反向排列形成了丰富的内部结构。在拓扑反铁磁体中,这种内部结构使得贝里相位的特性有可能获得独特的空间纹理。在这里,我们研究了在反铁磁轴子绝缘子——二维 MnBiTe 的偶数层中存在的这种可能性,其中空间自由度对应于不同的层。我们观察到一种霍尔效应——层霍尔效应,其中来自顶层和底层的电子自发地向相反方向偏转。具体来说,在零电场下,偶数层 MnBiTe 没有反常霍尔效应。然而,施加电场会导致一个大的、层极化的反常霍尔效应的出现,其值约为 0.5e/h(其中 e 是电子电荷,h 是普朗克常数)。这种层霍尔效应揭示了一种不寻常的层锁定的贝里曲率,它用于描述轴子绝缘子状态。此外,我们发现层锁定的贝里曲率可以通过电场和磁场矢量的点积形成的轴子场来操纵。我们的结果为检测和操纵完全补偿的拓扑反铁磁体的内部空间结构提供了新的途径。层锁定的贝里曲率代表了通过层特定的莫尔势等效应来实现贝里相位空间工程的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验