Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
Stat Med. 2024 Sep 20;43(21):4055-4072. doi: 10.1002/sim.10161. Epub 2024 Jul 8.
We present a trial design for sequential multiple assignment randomized trials (SMARTs) that use a tailoring function instead of a binary tailoring variable allowing for simultaneous development of the tailoring variable and estimation of dynamic treatment regimens (DTRs). We apply methods for developing DTRs from observational data: tree-based regression learning and Q-learning. We compare this to a balanced randomized SMART with equal re-randomization probabilities and a typical SMART design where re-randomization depends on a binary tailoring variable and DTRs are analyzed with weighted and replicated regression. This project addresses a gap in clinical trial methodology by presenting SMARTs where second stage treatment is based on a continuous outcome removing the need for a binary tailoring variable. We demonstrate that data from a SMART using a tailoring function can be used to efficiently estimate DTRs and is more flexible under varying scenarios than a SMART using a tailoring variable.
我们提出了一种序贯多项分配随机试验(SMARTs)的试验设计,该设计使用定制函数而不是二进制定制变量,从而允许同时开发定制变量和估计动态治疗方案(DTRs)。我们应用从观察数据中开发 DTRs 的方法:基于树的回归学习和 Q 学习。我们将其与具有相等再随机化概率的平衡随机 SMART 以及依赖于二进制定制变量的典型 SMART 设计进行比较,其中 DTRs 采用加权和重复回归进行分析。该项目通过提出基于连续结果的第二阶段治疗的 SMARTs 来解决临床试验方法中的一个空白,从而消除了对二进制定制变量的需求。我们证明,使用定制函数的 SMART 的数据可用于有效地估计 DTRs,并且在不同情况下比使用定制变量的 SMART 更灵活。