Suppr超能文献

序贯、多项分配、随机试验设计与定制功能。

A sequential, multiple assignment, randomized trial design with a tailoring function.

机构信息

Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Stat Med. 2024 Sep 20;43(21):4055-4072. doi: 10.1002/sim.10161. Epub 2024 Jul 8.

Abstract

We present a trial design for sequential multiple assignment randomized trials (SMARTs) that use a tailoring function instead of a binary tailoring variable allowing for simultaneous development of the tailoring variable and estimation of dynamic treatment regimens (DTRs). We apply methods for developing DTRs from observational data: tree-based regression learning and Q-learning. We compare this to a balanced randomized SMART with equal re-randomization probabilities and a typical SMART design where re-randomization depends on a binary tailoring variable and DTRs are analyzed with weighted and replicated regression. This project addresses a gap in clinical trial methodology by presenting SMARTs where second stage treatment is based on a continuous outcome removing the need for a binary tailoring variable. We demonstrate that data from a SMART using a tailoring function can be used to efficiently estimate DTRs and is more flexible under varying scenarios than a SMART using a tailoring variable.

摘要

我们提出了一种序贯多项分配随机试验(SMARTs)的试验设计,该设计使用定制函数而不是二进制定制变量,从而允许同时开发定制变量和估计动态治疗方案(DTRs)。我们应用从观察数据中开发 DTRs 的方法:基于树的回归学习和 Q 学习。我们将其与具有相等再随机化概率的平衡随机 SMART 以及依赖于二进制定制变量的典型 SMART 设计进行比较,其中 DTRs 采用加权和重复回归进行分析。该项目通过提出基于连续结果的第二阶段治疗的 SMARTs 来解决临床试验方法中的一个空白,从而消除了对二进制定制变量的需求。我们证明,使用定制函数的 SMART 的数据可用于有效地估计 DTRs,并且在不同情况下比使用定制变量的 SMART 更灵活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验