Suppr超能文献

用于稳定锂金属电池的亲锂多通道层,以同时控制锂离子通量和锂成核

Lithiophilic Multichannel Layer to Simultaneously Control the Li-Ion Flux and Li Nucleation for Stable Lithium Metal Batteries.

作者信息

Choi Gwangjin, Jang Hun Soo, Kim Heetae, Nguyen Tien Manh, Choi Junyoung, Suk Jungdon, Myung Jin Suk, Kim Se-Hee

机构信息

Department of Convergent Energy Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.

Department of Advanced Materials and Chemical Engineering University of Science and Technology (UST), Daejeon 34113, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2024 Jul 17;16(28):36204-36214. doi: 10.1021/acsami.4c00420. Epub 2024 Jul 8.

Abstract

Although the Li metal has been gaining attention as a promising anode material for the next-generation high-energy-density rechargeable batteries owing to its high theoretical specific capacity (3860 mAh g), its practical use remains challenging owing to inherent issues related to Li nucleation and growth. This paper reports the fabrication of a lithiophilic multichannel layer (LML) that enables the simultaneous control of Li nucleation and growth in Li-metal batteries. The LML, composed of lithiophilic ceramic composite nanoparticles (Ag-plated AlO particles), is fabricated using the electroless plating method. This LML provides numerous channels for a uniform Li-ion diffusion on a nonwoven separator. Furthermore, the lithiophilic Ag on the Li metal anode surface facing the LML induces a low overpotential during Li nucleation, resulting in a dense Li deposition. The LML enables the LiNiCoMnO|| Li cells to maintain a capacity higher than 75% after 100 cycles, even at high charge/discharge rates of 5.0 C at a cutoff voltage of 4.4 V, and achieve an ultrahigh energy density of 1164 Wh kg. These results demonstrate that the LML is a promising solution enabling the application of Li metal as an anode material in the next-generation Li-ion batteries.

摘要

尽管锂金属因其高理论比容量(3860 mAh/g)作为下一代高能量密度可充电电池的有前景的负极材料而受到关注,但其实际应用仍具有挑战性,因为存在与锂成核和生长相关的固有问题。本文报道了一种亲锂多通道层(LML)的制备,该层能够同时控制锂金属电池中的锂成核和生长。由亲锂陶瓷复合纳米颗粒(镀银AlO颗粒)组成的LML采用化学镀法制备。该LML在无纺布隔膜上提供了众多均匀锂离子扩散的通道。此外,面对LML的锂金属负极表面上的亲锂银在锂成核过程中诱导出低过电位,从而导致致密的锂沉积。LML使LiNiCoMnO||Li电池即使在4.4 V截止电压下5.0 C的高充/放电速率下,经过100次循环后仍能保持高于75%的容量,并实现1164 Wh/kg的超高能量密度。这些结果表明,LML是一种有前景的解决方案,能够使锂金属作为负极材料应用于下一代锂离子电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验