Suppr超能文献

Intermediate scattering function for polymer molecules: An approach based on relaxation mode analysis.

作者信息

Karasawa Naoyuki, Mitsutake Ayori, Takano Hiroshi

机构信息

Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.

School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.

出版信息

J Chem Phys. 2024 Jul 14;161(2). doi: 10.1063/5.0211504.

Abstract

The theory of polymer dynamics describes the intermediate scattering function for a polymer molecule in terms of relaxation modes defined by normal coordinates for the corresponding coarse-grained model. However, due to the difficulty of defining the normal coordinates for arbitrary polymer molecules, it is generally challenging to express the intermediate scattering function for a polymer molecule in terms of relaxation modes. To overcome this challenge, we propose a general method to calculate the intermediate scattering function for a polymer molecule on the basis of a relaxation mode analysis approach [Takano and Miyashita, J. Phys. Soc. Jpn. 64, 3688 (1995)]. In the proposed method, relaxation modes defined by eigenfunctions in a Markov process are evaluated on the basis of the simulation results for a polymer molecule and used to calculate the intermediate scattering function for that molecule. To demonstrate the effectiveness of the present method, we simulate the dynamics of a linear polymer molecule in a dilute solution and apply it to the calculation of the intermediate scattering function for the polymer molecule. The evaluation results regarding the relaxation modes reasonably describe the intermediate scattering function on the length scale of the radius of gyration of the polymer molecule. Accordingly, we examine the contributions of the pure relaxation and oscillatory relaxation processes to the entire intermediate scattering function.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验