Suppr超能文献

工业规模的多任务 ADME/PK 预测:利用大型和多样化的实验数据集。

Multi-Task ADME/PK prediction at industrial scale: leveraging large and diverse experimental datasets.

机构信息

Medicinal Chemistry Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.

Drug Discovery Sciences Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.

出版信息

Mol Inform. 2024 Oct;43(10):e202400079. doi: 10.1002/minf.202400079. Epub 2024 Jul 8.

Abstract

ADME (Absorption, Distribution, Metabolism, Excretion) properties are key parameters to judge whether a drug candidate exhibits a desired pharmacokinetic (PK) profile. In this study, we tested multi-task machine learning (ML) models to predict ADME and animal PK endpoints trained on in-house data generated at Boehringer Ingelheim. Models were evaluated both at the design stage of a compound (i. e., no experimental data of test compounds available) and at testing stage when a particular assay would be conducted (i. e., experimental data of earlier conducted assays may be available). Using realistic time-splits, we found a clear benefit in performance of multi-task graph-based neural network models over single-task model, which was even stronger when experimental data of earlier assays is available. In an attempt to explain the success of multi-task models, we found that especially endpoints with the largest numbers of data points (physicochemical endpoints, clearance in microsomes) are responsible for increased predictivity in more complex ADME and PK endpoints. In summary, our study provides insight into how data for multiple ADME/PK endpoints in a pharmaceutical company can be best leveraged to optimize predictivity of ML models.

摘要

吸收、分布、代谢和排泄(ADME)特性是判断候选药物是否具有理想药代动力学(PK)特征的关键参数。在这项研究中,我们测试了多任务机器学习(ML)模型,以预测基于勃林格殷格翰内部生成的数据进行训练的 ADME 和动物 PK 终点。模型在化合物的设计阶段(即尚无测试化合物的实验数据)和特定测定进行时(即可能有早期进行的测定的实验数据)进行了评估。使用现实的时间分割,我们发现基于图的多任务神经网络模型的性能明显优于单任务模型,而当有更早的测定的实验数据可用时,这种优势更加强大。为了解释多任务模型的成功,我们发现特别是数据点最多的终点(理化终点、微粒体清除率)对更复杂的 ADME 和 PK 终点的预测能力的提高起了重要作用。总之,我们的研究提供了深入了解如何利用制药公司中多个 ADME/PK 终点的数据来优化 ML 模型的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验