Díaz-Jiménez Víctor, Gómez-Sánchez Giselle, Likhanova Natalya Victorovna, Arellanes-Lozada Paulina, Olivares-Xometl Octavio, Lijanova Irina V, Arriola-Morales Janette
Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla 72570, México.
Dirección de Investigación, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas No. 152, Col. San Bartolo Atepehuacan, Ciudad de México 07730, México.
ACS Omega. 2024 Jun 15;9(26):27798-27831. doi: 10.1021/acsomega.4c01999. eCollection 2024 Jul 2.
API (American Petroleum Institute) steels are the most employed metal alloys in the oil industry due to their outstanding mechanical properties; however, their protection is considered as an imperative matter because of their corrosion damage vulnerability when exposed to different surroundings that provoke a rate increase in the concomitant redox reactions. This problematic situation becomes more relevant when the generation and/or use of one or various aqueous corrosive environments occur, in addition to process conditions, the result of which is extremely difficult to be controlled. For these reasons, the internal and external protection of exposed metallic systems are considered as a fundamental concern, where internal corrosion is often controlled through the addition of corrosion inhibitors (CIs). The present review analyzes researchers' contributions in the last years to the study and evaluation of CIs for API steel in different corrosive media featuring HCl, HSO, HNSOH, CO, HS, NaCl, and production water under different temperature and flow conditions. Different CIs derived from plant extracts, drugs, nanoparticles, or ionic liquids, mainly destined for acid media, were found. Throughout the review, an exhaustive analysis of inhibition process results is carried out based on gravimetric and/or electrochemical techniques that consider the weight loss of the metallic material and electrical behavior (current density, resistance, capacitance, frequency, impedance, etc.). Likewise, the results of computational analyses and those of surface analysis techniques were taken into account to reinforce the study of CIs.
美国石油学会(API)钢因其出色的机械性能而成为石油工业中使用最广泛的金属合金;然而,由于它们在暴露于不同环境时容易受到腐蚀破坏,从而导致伴随的氧化还原反应速率增加,因此对它们的保护被视为一项至关重要的事情。当除了工艺条件之外还产生和/或使用一种或多种含水腐蚀环境时,这种问题情况变得更加突出,其结果极难控制。出于这些原因,暴露金属系统的内部和外部保护被视为一个基本问题,其中内部腐蚀通常通过添加缓蚀剂(CIs)来控制。本综述分析了近年来研究人员在不同腐蚀介质(包括HCl、HSO、HNSOH、CO、HS、NaCl和采出水)中,在不同温度和流动条件下对API钢缓蚀剂的研究和评估所做的贡献。发现了不同的缓蚀剂,主要来源于植物提取物、药物、纳米颗粒或离子液体,主要用于酸性介质。在整个综述过程中,基于重量法和/或电化学技术,对抑制过程结果进行了详尽分析,这些技术考虑了金属材料的重量损失和电行为(电流密度、电阻、电容、频率、阻抗等)。同样,计算分析结果和表面分析技术结果也被纳入考虑,以加强对缓蚀剂的研究。