Suppr超能文献

基于施韦泽-斯克拉尔规则的气体安全状况分析

Analysis of the Gas Safety Situation Based on the Schweizer-Sklar Rule.

作者信息

Liang Rong

机构信息

Department of Computer Science and Technology, Xi'an University of Science and Technology, Yanta Road, Xi'an 710054, China.

出版信息

ACS Omega. 2024 Jun 20;9(26):28037-28045. doi: 10.1021/acsomega.4c00907. eCollection 2024 Jul 2.

Abstract

In the coal mining process, a large amount of harmful gases will be produced, which we call "gas". The main component of gas is methane. After the methane concentration reaches a certain limit, an explosion will occur, seriously affecting the safety of the production of coal mines. Gas safety situational awareness is an important basis for gas early warning. In order to take appropriate measures for different levels of risk, the safety situation level is classified into five levels, which can be attributed to the classification problem in machine learning. We propose a gas security situation analysis model based on the Schweizer-Sklar rule (GSSAM-SSR) using the multiweighted Schweizer-Sklar triangular norm array combination rule (SSR). First, the raw data are preprocessed. The model uses -means clustering with feature preference to determine the label column of the data set and principal component analysis to reduce the dimensionality of the collected high-dimensional gas-related data. Ten basic classification models are constructed, and the best performing models are selected as the basic classifier set by using the preorder method. Then, the SSR combination rule is proposed to combine the basic classifiers. Finally, considering the dynamic and quasi dynamic data of the mine, the basic classifier set and SSR combination rule are combined to construct the GSSAM-SSR model and applied to the gas security situation analysis. Experimental results show that the SSR combination rule achieves the best classification performance, exhibiting an accuracy of 94.43%, which is 2.51% higher than the accuracy of the gradient boosting decision tree model, which was the highest performing basic classifier and higher than the accuracies of the voting method and Bayesian combination rule.

摘要

在煤矿开采过程中,会产生大量有害气体,我们称之为“瓦斯”。瓦斯的主要成分是甲烷。当甲烷浓度达到一定限度后,就会发生爆炸,严重影响煤矿生产安全。瓦斯安全态势感知是瓦斯预警的重要依据。为了针对不同风险级别采取相应措施,将安全态势级别划分为五个等级,这可归结为机器学习中的分类问题。我们提出一种基于施韦泽 - 斯克拉尔规则的瓦斯安全态势分析模型(GSSAM - SSR),该模型使用多重加权施韦泽 - 斯克拉尔三角范数阵列组合规则(SSR)。首先,对原始数据进行预处理。该模型使用带特征偏好的K均值聚类来确定数据集的标签列,并通过主成分分析对采集到的高维瓦斯相关数据进行降维。构建十个基本分类模型,并使用预排序方法选择性能最佳的模型作为基本分类器集。然后,提出SSR组合规则来组合基本分类器。最后,考虑到煤矿的动态和准动态数据,将基本分类器集与SSR组合规则相结合构建GSSAM - SSR模型,并应用于瓦斯安全态势分析。实验结果表明,SSR组合规则实现了最佳分类性能,准确率达到94.43%,比性能最佳的基本分类器梯度提升决策树模型的准确率高2.51%,且高于投票法和贝叶斯组合规则的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b34/11223159/a26249b2501c/ao4c00907_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验