Liang Rong, Lv Qiaolin, Jia Pengtao, Zhao Zhilong, Xu Chengyixiong
Department of Safety Science and Engineering, Xi'an University of Science and Technology, Yanta Road, Xi'an 710054, China.
Department of Computer Science and Technology, Xi'an University of Science and Technology, Yanta Road, Xi'an 710054, China.
ACS Omega. 2021 May 25;6(22):14059-14067. doi: 10.1021/acsomega.1c00426. eCollection 2021 Jun 8.
To improve the accuracy of gas disaster risk identification, a selective ensemble classification model is proposed based on clustering selection and a new degree of combination fitness (CS-NDCF). First, nine base classifiers for gas disasters are constructed on the training data set, including the backpropagation (BP) neural network classifier, naive Bayes (NB) classifier, -nearest neighbor (KNN) classifier, logistic regression (LR) classifier, decision tree (DT) classifier, support vector machine (SVM) classifier, SVM classifier with cross-validation (SVMCV), random forest (RF) classifier, and gradient boosting DT (GBDT) classifier. Second, the -means clustering algorithm is used to cluster the base classifiers according to their classification performance. Then, the best performing classifier in each cluster is selected to compose the first selection set. Third, the degree of combination fitness is used to filter the first selection set again to obtain the optimal base classifier result set. Finally, an ensemble classification model is constructed with the optimal base classifier result set. The experimental results on actual mine monitoring data show that compared with the BP, NB, KNN, LR, DT, SVM, SVMCV, RF, and GBDT classifiers, the accuracy of CS-NDCF increases by 7.34, 34.83, 8.28, 12.94, 5.51, 11.72, 6.47, 1.31, and 1.20%, respectively, and CS-NDCF achieves the best forecasting results. Thus, CS-NDCF is an effective method for identifying gas disasters and has a good application value.
为提高瓦斯灾害风险识别的准确性,提出了一种基于聚类选择和新的组合适应度(CS-NDCF)的选择性集成分类模型。首先,在训练数据集上构建九个瓦斯灾害基础分类器,包括反向传播(BP)神经网络分类器、朴素贝叶斯(NB)分类器、K近邻(KNN)分类器、逻辑回归(LR)分类器、决策树(DT)分类器、支持向量机(SVM)分类器、带交叉验证的支持向量机(SVMCV)分类器、随机森林(RF)分类器和梯度提升决策树(GBDT)分类器。其次,采用K均值聚类算法根据基础分类器的分类性能对其进行聚类。然后,从每个聚类中选择性能最佳的分类器组成第一选择集。第三,利用组合适应度对第一选择集再次进行筛选,得到最优基础分类器结果集。最后,用最优基础分类器结果集构建集成分类模型。对实际矿井监测数据的实验结果表明,与BP、NB、KNN、LR、DT、SVM、SVMCV、RF和GBDT分类器相比,CS-NDCF的准确率分别提高了7.34%、34.83%、8.28%、12.94%、5.51%、11.72%、6.47%、1.31%和1.20%,且CS-NDCF取得了最佳预测效果。因此,CS-NDCF是一种有效的瓦斯灾害识别方法,具有良好的应用价值。