Suppr超能文献

从猕猴大脑的细胞构筑图像生成皮质受体分布的生成模型。

Generative Modelling of Cortical Receptor Distributions from Cytoarchitectonic Images in the Macaque Brain.

机构信息

Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.

Helmholtz AI, Research Centre Jülich, Jülich, Germany.

出版信息

Neuroinformatics. 2024 Jul;22(3):389-402. doi: 10.1007/s12021-024-09673-7. Epub 2024 Jul 8.

Abstract

Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.

摘要

神经递质受体密度对于理解大脑区域的分子结构很重要。定量的体外受体放射自显影技术已被引入来绘制大脑区域神经递质受体的分布图谱。然而,这种方法非常耗时耗力,这使得获得全脑分布图谱具有挑战性。与此同时,高通量的显微镜和 3D 重建技术已经能够获取高分辨率的脑图谱,这些脑图谱可以捕捉整个大脑中细胞密度的测量值。为了弥合受体测量在构建详细的全脑图谱方面的差距,我们研究了从细胞体染色预测真实神经递质密度分布的可行性。具体来说,我们利用条件生成对抗网络(cGAN),根据细胞体染色切片的显微镜扫描,预测猕猴初级视觉(V1)和运动皮层(M1)中乙酰胆碱的 M2 受体和谷氨酸的 kainate 受体的密度分布。我们的模型是在显示细胞体和受体分布的对齐连续切片的相应斑块上进行训练的,以确保两种模态之间的映射关系。我们对 cGAN 的定性和定量评估表明,它们能够从细胞体染色切片预测受体密度,同时保持皮层特征,如层厚和曲率。我们的工作强调了跨模态图像翻译问题在解决多模态脑图谱中数据差距方面的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90e/11329581/f72bf4ec4d4a/12021_2024_9673_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验