Schubert Nicole, Axer Markus, Schober Martin, Huynh Anh-Minh, Huysegoms Marcel, Palomero-Gallagher Nicola, Bjaalie Jan G, Leergaard Trygve B, Kirlangic Mehmet E, Amunts Katrin, Zilles Karl
Institute of Neuroscience and Medicine 1, Research Centre Jülich Jülich, Germany.
Institute of Basic Medical Sciences, University of Oslo Oslo, Norway.
Front Neuroanat. 2016 May 3;10:51. doi: 10.3389/fnana.2016.00051. eCollection 2016.
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.
高分辨率多尺度和多模态的脑三维模型是理解其复杂结构和功能组织的重要工具。解决脑组织不同方面问题的神经成像技术应整合到一个参考空间中,以便对各种数据集及其模态进行地形学上正确的对齐和后续分析。Waxholm空间(http://software.incf.org/software/waxholm-space)是一个公开可用的基于三维坐标的标准参考空间,用于啮齿动物脑内神经解剖数据的映射和配准。本文提供了一种新开发的流程,将成像和重建步骤与一种新颖的配准策略相结合,以将新的神经成像模态整合到Waxholm空间图谱中。作为原理验证,我们将大鼠脑的大规模高分辨率细胞结构、毒蕈碱M2受体和纤维构筑图像整合到基于三维数字MRI的Waxholm空间斯普拉格·道利大鼠图谱中。我们描述了从图像采集到这三种模态的重建和配准到Waxholm空间大鼠图谱的整个工作流程。脑切片到图谱的配准通过线性和非线性变换来进行。该程序的有效性通过视觉检查进行定性证明,并通过测量代表性图谱描绘区域与基于受体或纤维构筑数据的相同区域之间的一致性进行定量评估。这种新方法首次能够在整个大鼠脑中生成神经纤维和纤维束或毒蕈碱M2受体密度分布的三维重建体积。此外,我们的流程便于将更多神经成像数据集,例如组织化学染色的三维重建体积或多种其他受体类型的区域分布,纳入Waxholm空间。由此,在大鼠脑的Waxholm空间图谱中创建了一个多尺度和多模态的大鼠脑模型。由于将这些多模态高分辨率数据集配准到同一坐标系是多参数分析不可或缺的必要条件,这种方法首次能够在微观尺度上对同一解剖结构中的受体和细胞分布以及纤维密度进行联合研究。