Kamath Archit Krishna, Anavatti Sreenatha G, Feroskhan Mir
IEEE Trans Cybern. 2024 Nov;54(11):6319-6332. doi: 10.1109/TCYB.2024.3413072. Epub 2024 Oct 30.
This article presents a visual servoing strategy that integrates the capabilities of a physics-informed neural network (PINN) to estimate system uncertainties and inaccuracies with a dynamics-centered visual servoing technique for multirotors. The proposed method effectively combines these approaches, eliminating the need for inverse Jacobian calculations to determine multirotor motion by directly relating pixel variations to the multirotor's torque and thrust inputs, while also strengthening the method's robustness through the utilization of the PINN to model and address uncertainties in camera and multirotor parameters, as well as the modeling inaccuracies inherent in the dynamics-centered visual servoing technique. In contrast to existing state-of-the-art data-driven approaches, the proposed PINN approach requires, on average, 65% less labeled data to characterize uncertainties and inaccuracies. To ensure real-time implementation of the visual servoing model, the PINN-learned model is combined with an adaptive horizon monotonically weighted nonlinear model predictive controller (NMPC), capable of processing control efforts at rates 10 times faster than existing Tube MPC and Adaptive MPC strategies. These findings are validated through real-time trajectory tracking experiments, which not only highlight the effectiveness of the proposed approach in approximating modeling inaccuracies but also its capability in handling uncertainties upto 70% in camera parameters.
本文提出了一种视觉伺服策略,该策略集成了物理信息神经网络(PINN)的功能,以估计系统不确定性和不准确性,并结合了一种以动力学为中心的多旋翼视觉伺服技术。所提出的方法有效地结合了这些方法,通过将像素变化直接与多旋翼的扭矩和推力输入相关联,消除了确定多旋翼运动所需的逆雅可比计算,同时还通过利用PINN对相机和多旋翼参数中的不确定性以及以动力学为中心的视觉伺服技术中固有的建模不准确性进行建模和处理,增强了该方法的鲁棒性。与现有的先进数据驱动方法相比,所提出的PINN方法平均需要少65%的标记数据来表征不确定性和不准确性。为确保视觉伺服模型的实时实现,将PINN学习模型与自适应时域单调加权非线性模型预测控制器(NMPC)相结合,该控制器处理控制量的速度比现有的管式MPC和自适应MPC策略快10倍。这些结果通过实时轨迹跟踪实验得到验证,实验不仅突出了所提出方法在逼近建模不准确性方面的有效性,还突出了其处理高达70%相机参数不确定性的能力。