Suppr超能文献

基于 SSVEP 的脑-机接口中空间滤波的最小二乘统一框架。

A Least-Square Unified Framework for Spatial Filtering in SSVEP-Based BCIs.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2470-2481. doi: 10.1109/TNSRE.2024.3424410. Epub 2024 Jul 11.

Abstract

The steady-state visual evoked potential (SSVEP) has become one of the most prominent BCI paradigms with high information transfer rate, and has been widely applied in rehabilitation and assistive applications. This paper proposes a least-square (LS) unified framework to summarize the correlation analysis (CA)-based SSVEP spatial filtering methods from a machine learning perspective. Within this framework, the commonalities and differences between various spatial filtering methods appear apparent, the interpretation of computational factors becomes intuitive, and spatial filters can be determined by solving a generalized optimization problem with non-linear and regularization items. Moreover, the proposed LS framework provides the foundation of utilizing the knowledge behind these spatial filtering methods in further classification/regression model designs. Through a comparative analysis of existing representative spatial filtering methods, recommendations are made for the superior and robust design strategies. These recommended strategies are further integrated to fill the research gaps and demonstrate the ability of the proposed LS framework to promote algorithmic improvements, resulting in five new spatial filtering methods. This study could offer significant insights in understanding the relationships between various design strategies in the spatial filtering methods from the machine learning perspective, and would also contribute to the development of the SSVEP recognition methods with high performance.

摘要

稳态视觉诱发电位(SSVEP)已成为最突出的脑机接口范式之一,具有较高的信息传输率,并已广泛应用于康复和辅助应用中。本文提出了一种最小二乘(LS)统一框架,从机器学习的角度总结了基于相关分析(CA)的 SSVEP 空间滤波方法。在这个框架内,各种空间滤波方法的共性和差异变得明显,计算因素的解释变得直观,并且可以通过求解具有非线性和正则项的广义优化问题来确定空间滤波器。此外,所提出的 LS 框架为在进一步的分类/回归模型设计中利用这些空间滤波方法背后的知识提供了基础。通过对现有代表性空间滤波方法的比较分析,提出了优越和稳健的设计策略建议。这些建议策略进一步整合,以填补研究空白,并展示所提出的 LS 框架促进算法改进的能力,从而产生了五种新的空间滤波方法。这项研究可以从机器学习的角度深入了解各种设计策略之间的关系,也有助于开发具有高性能的 SSVEP 识别方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验