Suppr超能文献

基于 SSVEP 的脑-机接口中的空间滤波:统一框架与新的改进。

Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements.

出版信息

IEEE Trans Biomed Eng. 2020 Nov;67(11):3057-3072. doi: 10.1109/TBME.2020.2975552. Epub 2020 Feb 21.

Abstract

OBJECTIVE

In the steady-state visual evoked potential (SSVEP)-based brain computer interfaces (BCIs), spatial filtering, which combines the multi-channel electroencephalography (EEG) signals in order to reduce the non-SSVEP-related component and thus enhance the signal-to-noise ratio (SNR), plays an important role in target recognition. Recently, various spatial filtering algorithms have been developed employing different prior knowledge and characteristics of SSVEPs, however how these algorithms interconnect and differ is not yet fully explored, leading to difficulties in further understanding, utilizing and improving them.

METHODS

We propose a unified framework under which the spatial filtering algorithms can be formulated as generalized eigenvalue problems (GEPs) with four different elements: data, temporal filter, orthogonal projection and spatial filter. Based on the framework, we design new spatial filtering algorithms for improvements through the choice of different elements.

RESULTS

The similarities, differences and relationships among nineteen mainstream spatial filtering algorithms are revealed under the proposed framework. Particularly, it is found that they originate from the canonical correlation analysis (CCA), principal component analysis (PCA), and multi-set CCA, respectively. Furthermore, three new spatial filtering algorithms are developed with enhanced performance validated on two public SSVEP datasets with 45 subjects.

CONCLUSION

The proposed framework provides insights into the underlying relationships among different spatial filtering algorithms and helps the design of new spatial filtering algorithms.

SIGNIFICANCE

This is a systematic study to explore, compare and improve the existing spatial filtering algorithms, which would be significant for further understanding and future development of high performance SSVEP-based BCIs.

摘要

目的

在基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中,空间滤波通过组合多通道脑电图(EEG)信号,以减少与 SSVEP 无关的成分,从而提高信号噪声比(SNR),在目标识别中起着重要作用。最近,已经开发了各种空间滤波算法,利用 SSVEP 的不同先验知识和特征,然而,这些算法是如何相互连接和不同的还没有得到充分的探索,导致进一步理解、利用和改进它们变得困难。

方法

我们提出了一个统一的框架,在这个框架下,空间滤波算法可以表示为具有四个不同元素的广义特征问题(GEPs):数据、时间滤波器、正交投影和空间滤波器。基于该框架,我们通过选择不同的元素来设计新的空间滤波算法以进行改进。

结果

在提出的框架下,揭示了 19 种主流空间滤波算法之间的相似性、差异和关系。特别是,发现它们分别源自典型相关分析(CCA)、主成分分析(PCA)和多集 CCA。此外,还开发了三种新的空间滤波算法,在包含 45 名受试者的两个公共 SSVEP 数据集上进行验证,性能得到了提高。

结论

所提出的框架提供了对不同空间滤波算法之间潜在关系的深入了解,并有助于设计新的空间滤波算法。

意义

这是一项系统的研究,旨在探索、比较和改进现有的空间滤波算法,这对于进一步理解和未来开发高性能基于 SSVEP 的 BCI 具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验