Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602.
Genome Informatics Facility, Iowa State University, Ames, IA 50011.
Phytopathology. 2024 Oct;114(10):2341-2350. doi: 10.1094/PHYTO-03-24-0095-R. Epub 2024 Oct 4.
Soybean cyst nematode (SCN, ) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes and . We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for . To identify SCN genes potentially involved in overcoming /-mediated resistance, we conducted RNA sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison with early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or downregulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
大豆胞囊线虫(SCN, )是通过种植抗大豆品种来进行最有效的管理,但由于同一抗性资源的重复使用,导致了毒力 SCN 种群的广泛出现,这些种群能够克服大豆的抗性。大豆品种 Forrest 对 SCN HG 型 0(Race 3)的抗性是由大豆抗性基因 和 之间的上位性互作介导的。我们之前通过在易感和抗性重组自交系上大量选择 SCN HG 型 0(Race 3),开发了两个 SCN 近交系群体,这些自交系来自 Forrest 和 SCN 易感品种 Essex 之间的杂交,它们在 上存在差异。为了鉴定可能参与克服 /-介导抗性的 SCN 基因,我们对这两个 SCN 近交系群体感染各自宿主的早期寄生幼体进行了 RNA 测序,结果仅发现少数差异表达基因(DEGs)。然而,在与感染抗性宿主的无毒 SCN 近交系群体的早期寄生幼体进行比较时,我们发现了 59 个和 171 个 DEGs 在适应抗性宿主的毒力寄生幼体中特异性地上调或下调。有趣的是,这些 DEGs 编码的蛋白质包括维生素 B 相关蛋白(还原叶酸载体、生物素合酶和硫胺素转运体)和已知在植物防御抑制中发挥作用的线虫效应子,这表明毒力 SCN 可能会产生更高的转录反应来应对增强的植物防御和抗性大豆宿主的改变的营养状态。[公式:见正文] 版权所有 © 2024 作者。这是一个在 CC BY-NC-ND 4.0 国际许可下分发的开放获取文章。