Suppr超能文献

用于预测急性心力衰竭再住院的深度学习:模型基础与外部验证。

Deep learning for predicting rehospitalization in acute heart failure: Model foundation and external validation.

作者信息

Kim Mi-Na, Lee Yong Seok, Park Youngmin, Jung Ayoung, So Hanjee, Park Joonwoong, Park Jin-Joo, Choi Dong-Joo, Kim So-Ree, Park Seong-Mi

机构信息

Department of Internal Medicine, Division of Cardiology, Anam Hospital, Korea University Medicine, Seoul, Korea.

Data Analytics Group, Samsung SDS, Seoul, Korea.

出版信息

ESC Heart Fail. 2024 Dec;11(6):3702-3712. doi: 10.1002/ehf2.14918. Epub 2024 Jul 9.

Abstract

AIMS

Assessing the risk for HF rehospitalization is important for managing and treating patients with HF. To address this need, various risk prediction models have been developed. However, none of them used deep learning methods with real-world data. This study aimed to develop a deep learning-based prediction model for HF rehospitalization within 30, 90, and 365 days after acute HF (AHF) discharge.

METHODS AND RESULTS

We analysed the data of patients admitted due to AHF between January 2014 and January 2019 in a tertiary hospital. In performing deep learning-based predictive algorithms for HF rehospitalization, we use hyperbolic tangent activation layers followed by recurrent layers with gated recurrent units. To assess the readmission prediction, we used the AUC, precision, recall, specificity, and F1 measure. We applied the Shapley value to identify which features contributed to HF readmission. Twenty-two prognostic features exhibiting statistically significant associations with HF rehospitalization were identified, consisting of 6 time-independent and 16 time-dependent features. The AUC value shows moderate discrimination for predicting readmission within 30, 90, and 365 days of follow-up (FU) (AUC:0.63, 0.74, and 0.76, respectively). The features during the FU have a relatively higher contribution to HF rehospitalization than features from other time points.

CONCLUSIONS

Our deep learning-based model using real-world data could provide valid predictions of HF rehospitalization in 1 year follow-up. It can be easily utilized to guide appropriate interventions or care strategies for patients with HF. The closed monitoring and blood test in daily clinics are important for assessing the risk of HF rehospitalization.

摘要

目的

评估心力衰竭(HF)再住院风险对于管理和治疗HF患者至关重要。为满足这一需求,已开发出各种风险预测模型。然而,这些模型均未使用基于真实世界数据的深度学习方法。本研究旨在开发一种基于深度学习的预测模型,用于预测急性心力衰竭(AHF)出院后30天、90天和365天内的HF再住院情况。

方法与结果

我们分析了一家三级医院2014年1月至2019年1月因AHF入院患者的数据。在执行基于深度学习的HF再住院预测算法时,我们使用双曲正切激活层,随后是带有门控循环单元的循环层。为评估再入院预测情况,我们使用了曲线下面积(AUC)、精度、召回率、特异性和F1分数。我们应用夏普利值来确定哪些特征促成了HF再入院。确定了22个与HF再住院具有统计学显著关联的预后特征,包括6个时间独立特征和16个时间依赖特征。AUC值在随访(FU)的30天、90天和365天内对预测再入院显示出中等区分度(AUC分别为0.63、0.74和0.76)。与其他时间点的特征相比,FU期间的特征对HF再住院的贡献相对更高。

结论

我们基于深度学习的模型使用真实世界数据能够对1年随访中的HF再住院情况提供有效的预测。它可轻松用于指导针对HF患者的适当干预措施或护理策略。日常临床中的密切监测和血液检查对于评估HF再住院风险很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2332/11631275/10ffe5825de0/EHF2-11-3702-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验