Suppr超能文献

机器学习在心力衰竭的诊断、分类和预测中的临床应用。

Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure.

机构信息

Division of Cardiology, Duke University Medical Center, Durham, NC.

Division of Cardiology, Duke University Medical Center, Durham, NC.

出版信息

Am Heart J. 2020 Nov;229:1-17. doi: 10.1016/j.ahj.2020.07.009. Epub 2020 Jul 16.

Abstract

Machine learning and artificial intelligence are generating significant attention in the scientific community and media. Such algorithms have great potential in medicine for personalizing and improving patient care, including in the diagnosis and management of heart failure. Many physicians are familiar with these terms and the excitement surrounding them, but many are unfamiliar with the basics of these algorithms and how they are applied to medicine. Within heart failure research, current applications of machine learning include creating new approaches to diagnosis, classifying patients into novel phenotypic groups, and improving prediction capabilities. In this paper, we provide an overview of machine learning targeted for the practicing clinician and evaluate current applications of machine learning in the diagnosis, classification, and prediction of heart failure.

摘要

机器学习和人工智能在科学界和媒体中引起了广泛关注。这些算法在医学领域具有很大的潜力,可以实现个性化和改善患者护理,包括心力衰竭的诊断和管理。许多医生熟悉这些术语及其背后的兴奋点,但许多人不了解这些算法的基础知识及其在医学中的应用。在心力衰竭研究中,机器学习的当前应用包括创造新的诊断方法、将患者分类为新的表型组以及提高预测能力。在本文中,我们为临床医生提供了机器学习的概述,并评估了机器学习在心力衰竭的诊断、分类和预测中的当前应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验