National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
J Magn Reson. 2024 Aug;365:107730. doi: 10.1016/j.jmr.2024.107730. Epub 2024 Jul 3.
Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic Cα-Cβ correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4 (PC4), which enhances Cα-Cβ correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline β1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances Cα-Cβ correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective C-C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.
固态核磁共振(NMR)是研究不溶性蛋白质结构和动态的有力工具。它首先通过多维相关实验进行信号分配,其中脂肪族 Cα-Cβ 相关对于识别特定残基是必不可少的。然而,开发有效的方法来实现这种相关性是固态 NMR 中的一个挑战。我们提出了一种简单的带选择性零量子(ZQ)重聚方法,称为 POST-C4(PC4),它可以在中等魔角旋转(MAS)条件下增强 Cα-Cβ 相关。PC4 需要最小的 C 射频(RF)场和质子去耦,对 RF 变化具有高稳定性,并具有优异的效率。对各种样品的比较测试,包括甲酰基-Met-Leu-Phe(fMLF)三肽、蛋白 G(GB1)的微结晶β1 免疫球蛋白结合域和来自甲烷球菌 acetivorans(MaMscL)的机械敏感通道大电导蛋白,表明 PC4 选择性地增强了 Cα-Cβ 相关,最高可达 50%,同时抑制了不需要的相关,与流行的偶极辅助旋转共振(DARR)相比。它满足了对选择性 C-C 相关方法的长期需求。我们预计,这种简单但有效的 PC4 方法将通过固态 NMR 在结构生物学中立即得到应用。