Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
J Phys Chem B. 2018 Sep 6;122(35):8367-8379. doi: 10.1021/acs.jpcb.8b06400. Epub 2018 Aug 28.
We introduce a pulsed third-spin-assisted recoupling experiment that produces high-intensity long-range N-C cross peaks using low radiofrequency (rf) energy. This Proton-Enhanced Rotor-echo Short-Pulse IRradiATION Cross-Polarization (CP) pulse sequence operates with the same principle as the Proton-Assisted Insensitive-Nuclei Cross-Polarization (CP) experiment but uses only a fraction of the rf energy by replacing continuous-wave C and N irradiation with rotor-echo 90° pulses. Using formyl-Met-Leu-Phe (f-MLF) and β1 immunoglobulin binding domain of protein G (GB1) as model proteins, we demonstrate experimentally how CP polarization transfer depends on the CP contact time, rf power, pulse flip angle, and C carrier frequency and compare the CP performance with the performances of CP, CP, and CP for measuring N-C cross peaks. CP achieves long-range N-C transfer and yields higher cross peak-intensities than that of the other techniques. Numerical simulations reproduce the experimental trends and moreover indicate that CP relies on N-H and C-H dipolar couplings rather than N-C dipolar coupling for polarization transfer. Therefore, CP is an rf-efficient and higher-sensitivity alternative to CP for measuring long-range N-C correlations, which are essential for protein resonance assignment and structure determination. Using cross peaks from two CP N-C correlation spectra as the sole distance restraints, supplemented with (φ, ψ) torsion angles obtained from chemical shifts, we calculated the GB1 structure and obtained a backbone root-mean-square deviation of 2.0 Å from the high-resolution structure of the protein. Therefore, this rf-efficient CP method is useful for obtaining many long-range distance restraints for protein structure determination.
我们介绍了一种使用低射频(rf)能量产生高强度远程 N-C 交叉峰的脉冲三自旋辅助再偶联实验。这个 Proton-Enhanced Rotor-echo Short-Pulse IRradiation Cross-Polarization(CP)脉冲序列的工作原理与 Proton-Assisted Insensitive-Nuclei Cross-Polarization(CP)实验相同,但通过用转子回波 90°脉冲代替连续波 C 和 N 照射,仅使用了射频能量的一小部分。使用 formyl-Met-Leu-Phe(f-MLF)和蛋白 G 的β1 免疫球蛋白结合域(GB1)作为模型蛋白,我们通过实验演示了 CP 极化转移如何依赖于 CP 接触时间、rf 功率、脉冲翻转角和 C 载波频率,并将 CP 的性能与 CP、CP 和 CP 用于测量 N-C 交叉峰的性能进行了比较。CP 实现了远程 N-C 转移,并产生了比其他技术更高的交叉峰强度。数值模拟再现了实验趋势,并且还表明 CP 依赖于 N-H 和 C-H 偶极耦合而不是 N-C 偶极耦合进行极化转移。因此,CP 是一种用于测量远程 N-C 相关的高效射频和高灵敏度替代方法,这对于蛋白质共振分配和结构确定至关重要。使用两个 CP N-C 相关光谱中的交叉峰作为唯一的距离约束,并辅以从化学位移获得的(φ,ψ)扭转角,我们计算了 GB1 结构,并获得了与蛋白质高分辨率结构的 backbone root-mean-square deviation 为 2.0 Å。因此,这种高效射频的 CP 方法对于获得许多用于蛋白质结构确定的远程距离约束非常有用。