通过多模态数据的综合分析鉴定帕金森病PACE亚型并重新利用治疗方法。
Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data.
作者信息
Su Chang, Hou Yu, Xu Jielin, Xu Zhenxing, Zhou Manqi, Ke Alison, Li Haoyang, Xu Jie, Brendel Matthew, Maasch Jacqueline R M A, Bai Zilong, Zhang Haotan, Zhu Yingying, Cincotta Molly C, Shi Xinghua, Henchcliffe Claire, Leverenz James B, Cummings Jeffrey, Okun Michael S, Bian Jiang, Cheng Feixiong, Wang Fei
机构信息
Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
出版信息
NPJ Digit Med. 2024 Jul 9;7(1):184. doi: 10.1038/s41746-024-01175-9.
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (≥5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/α-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
帕金森病(PD)是一种严重的神经退行性疾病,具有显著的临床和进展异质性。本研究旨在通过对各种数据模式的综合分析来解决PD的异质性问题。我们使用机器学习和深度学习分析了新发PD患者的临床进展数据(≥5年),以表征个体的表型进展轨迹用于PD亚型分类。我们发现了三种PD进展亚型,表现出不同的进展模式:缓慢进展亚型(PD-I),基线严重程度较轻,进展速度较慢;中度进展亚型(PD-M),基线严重程度较轻,但以中等进展速度发展;快速进展亚型(PD-R),症状进展速度最快。我们发现脑脊液中P- tau/α-突触核蛋白比值以及某些脑区的萎缩是这些亚型的潜在标志物。使用基于网络的方法对基因和转录组图谱进行分析,确定了与每种亚型相关的分子模块。例如,PD-R特异性模块提示STAT3、FYN、BECN1 APOA1、NEDD4和GATA2是PD-R的潜在驱动基因。它还提示神经炎症、氧化应激、代谢、PI3K/AKT和血管生成途径是PD快速进展(即PD-R)的潜在驱动因素。此外,我们使用基于网络的方法和细胞系药物-基因特征数据,通过靶向这些亚型特异性分子模块确定了可重新利用的候选药物。我们使用两个大规模真实世界患者数据库进一步评估了它们的治疗效果;我们获得的真实世界证据突出了二甲双胍在改善PD进展方面的潜力。总之,这项工作有助于更好地理解PD进展的临床和病理生理复杂性,并加速精准医学的发展。