Suppr超能文献

对全人群血浆蛋白进行机器学习分析可识别帕金森病的激素生物标志物。

Machine learning analysis of population-wide plasma proteins identifies hormonal biomarkers of Parkinson's Disease.

作者信息

Chaudhry Fayzan, Kim Tae Wan, Elemento Olivier, Betel Doron

机构信息

Tri-Institutional PhD program in Computational Biology, New York, NY, USA.

Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.

出版信息

medRxiv. 2024 Dec 27:2024.12.21.24313256. doi: 10.1101/2024.12.21.24313256.

Abstract

As the number of Parkinson's patients is expected to increase with the growth of the aging population there is a growing need to identify new diagnostic markers that can be used cheaply and routinely to monitor the population, stratify patients towards treatment paths and provide new therapeutic leads. Genetic predisposition and familial forms account for only around 10% of PD cases [1] leaving a large fraction of the population with minimal effective markers for identifying high risk individuals. The establishment of population-wide omics and longitudinal health monitoring studies provides an opportunity to apply machine learning approaches on these unbiased cohorts to identify novel PD markers. Here we present the application of three machine learning models to identify protein plasma biomarkers of PD using plasma proteomics measurements from 43,408 UK Biobank subjects as the training and test set and an additional 103 samples from Parkinson's Progression Markers Initiative (PPMI) as external validation. We identified a group of highly predictive plasma protein markers including known markers such as DDC and CALB2 as well as new markers involved in the JAK-STAT, PI3K-AKT pathways and hormonal signaling. We further demonstrate that these features are well correlated with UPDRS severity scores and stratify these to protective and adversarial features that potentially contribute to the pathogenesis of PD.

摘要

随着帕金森病患者数量预计会随着老龄化人口的增长而增加,越来越需要确定新的诊断标志物,这些标志物可以廉价且常规地用于监测人群、对患者进行分层以确定治疗路径并提供新的治疗线索。遗传易感性和家族性形式仅占帕金森病病例的约10%[1],使得很大一部分人群缺乏用于识别高危个体的有效标志物。全人群组学和纵向健康监测研究的开展为在这些无偏倚队列上应用机器学习方法以识别新的帕金森病标志物提供了机会。在此,我们展示了三种机器学习模型的应用,使用来自43408名英国生物银行受试者的血浆蛋白质组学测量值作为训练和测试集,并使用来自帕金森病进展标志物倡议(PPMI)的另外103个样本作为外部验证,来识别帕金森病的血浆蛋白质生物标志物。我们确定了一组具有高度预测性的血浆蛋白质标志物,包括已知标志物如DDC和CALB2,以及参与JAK-STAT、PI3K-AKT途径和激素信号传导的新标志物。我们进一步证明,这些特征与统一帕金森病评定量表(UPDRS)严重程度评分密切相关,并将其分层为可能有助于帕金森病发病机制的保护性和对抗性特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/321b/11703317/df31336dc1e7/nihpp-2024.12.21.24313256v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验