Luo Jun Jiang, Qin Ling Yun, Zan Xin Yao, Zou Hao Lin, Luo Hong Qun, Li Nian Bing, Li Bang Lin
Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Langmuir. 2024 Jul 23;40(29):14900-14907. doi: 10.1021/acs.langmuir.4c00916. Epub 2024 Jul 10.
The transfer of chirality from molecules to synthesized nanomaterials has recently attracted significant attention. Although most studies have focused on graphene and plasmonic metal nanostructures, layered transition metal dichalcogenides (TMDs), particularly MoS, have recently garnered considerable attention due to their semiconducting and electrocatalytic characteristics. Herein, we report a new approach for the synthesis of chiral molybdenum sulfide nanomaterials based on a bottom-up synthesis method in the presence of chiral cysteine enantiomers. In the synthesis process, molybdenum trioxide and sodium hydrosulfide serve as molybdenum and sulfur sources, respectively. In addition, ascorbic acid acts as a reducing agent, resulting in the formation of zero-dimensional MoS nanodots. Moreover, the addition of cysteine enantiomers to the growth solutions contributes to the chirality evolution of the MoS nanostructures. The chirality is attributed to the cysteine enantiomer-induced preferential folding of the MoS planes. The growth mechanism and chiral structure of the nanomaterials are confirmed through a series of characterization techniques. This work combines chirality with the bottom-up synthesis of MoS nanodots, thereby expanding the synthetic methods for chiral nanomaterials. This simple synthesis approach provides new insights for the construction of other chiral TMD nanomaterials with emerging structures and properties. More significantly, the as-formed MoS nanodots exhibited highly defect-rich structures and chiroptical performance, thereby inspiring a high potential for emerging optical and electronic applications.
手性从分子转移到合成纳米材料最近引起了广泛关注。尽管大多数研究集中在石墨烯和等离子体金属纳米结构上,但层状过渡金属二硫化物(TMDs),特别是MoS,由于其半导体和电催化特性,最近受到了相当大的关注。在此,我们报告了一种基于自下而上合成方法,在手性半胱氨酸对映体存在下合成手性硫化钼纳米材料的新方法。在合成过程中,三氧化钼和硫化氢钠分别作为钼源和硫源。此外,抗坏血酸作为还原剂,导致形成零维MoS纳米点。此外,向生长溶液中添加半胱氨酸对映体有助于MoS纳米结构的手性演化。手性归因于半胱氨酸对映体诱导的MoS平面优先折叠。通过一系列表征技术证实了纳米材料的生长机制和手性结构。这项工作将手性与MoS纳米点的自下而上合成相结合,从而扩展了手性纳米材料的合成方法。这种简单的合成方法为构建具有新结构和性能的其他手性TMD纳米材料提供了新的见解。更重要的是,所形成的MoS纳米点表现出高度富含缺陷的结构和手性光学性能,从而激发了其在新兴光学和电子应用中的巨大潜力。