Suppr超能文献

使用人工智能对预测列线图进行验证和优化:评估大脑半球大面积脑梗死患者的院内死亡率

Validation and refinement of a predictive nomogram using artificial intelligence: assessing in-hospital mortality in patients with large hemispheric cerebral infarction.

作者信息

Ding Jian, Ma Xiaoming, Huang Wendie, Yue Chunxian, Xu Geman, Wang Yumei, Sheng Shiying, Liu Meng, Ren Yi

机构信息

Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China.

Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.

出版信息

Front Neurol. 2024 Jun 25;15:1398142. doi: 10.3389/fneur.2024.1398142. eCollection 2024.

Abstract

BACKGROUND

Large Hemispheric Infarction (LHI) poses significant mortality and morbidity risks, necessitating predictive models for in-hospital mortality. Previous studies have explored LHI progression to malignant cerebral edema (MCE) but have not comprehensively addressed in-hospital mortality risk, especially in non-decompressive hemicraniectomy (DHC) patients.

METHODS

Demographic, clinical, risk factor, and laboratory data were gathered. The population was randomly divided into Development and Validation Groups at a 3:1 ratio, with no statistically significant differences observed. Variable selection utilized the Bonferroni-corrected Boruta technique ( < 0.01). Logistic Regression retained essential variables, leading to the development of a nomogram. ROC and DCA curves were generated, and calibration was conducted based on the Validation Group.

RESULTS

This study included 314 patients with acute anterior-circulating LHI, with 29.6% in the Death group ( = 93). Significant variables, including Glasgow Coma Score, Collateral Score, NLR, Ventilation, Non-MCA territorial involvement, and Midline Shift, were identified through the Boruta algorithm. The final Logistic Regression model led to a nomogram creation, exhibiting excellent discriminative capacity. Calibration curves in the Validation Group showed a high degree of conformity with actual observations. DCA curve analysis indicated substantial clinical net benefit within the 5 to 85% threshold range.

CONCLUSION

We have utilized NIHSS score, Collateral Score, NLR, mechanical ventilation, non-MCA territorial involvement, and midline shift to develop a highly accurate, user-friendly nomogram for predicting in-hospital mortality in LHI patients. This nomogram serves as valuable reference material for future studies on LHI patient prognosis and mortality prevention, while addressing previous research limitations.

摘要

背景

大面积半球梗死(LHI)带来了显著的死亡和发病风险,因此需要建立预测院内死亡率的模型。先前的研究探讨了LHI进展为恶性脑水肿(MCE)的情况,但尚未全面解决院内死亡风险问题,尤其是在非减压性颅骨切除术(DHC)患者中。

方法

收集人口统计学、临床、危险因素和实验室数据。将研究人群以3:1的比例随机分为开发组和验证组,两组之间未观察到统计学上的显著差异。变量选择采用Bonferroni校正的Boruta技术(<0.01)。逻辑回归保留了重要变量,从而生成了列线图。绘制了ROC和DCA曲线,并基于验证组进行了校准。

结果

本研究纳入了314例急性前循环LHI患者,死亡组占29.6%(n = 93)。通过Boruta算法确定了包括格拉斯哥昏迷评分、侧支循环评分、中性粒细胞与淋巴细胞比值、通气、非大脑中动脉区域受累和中线移位等显著变量。最终的逻辑回归模型生成了列线图,显示出良好的判别能力。验证组的校准曲线与实际观察结果高度吻合。DCA曲线分析表明,在5%至85%的阈值范围内具有显著的临床净效益。

结论

我们利用美国国立卫生研究院卒中量表(NIHSS)评分、侧支循环评分、中性粒细胞与淋巴细胞比值、机械通气、非大脑中动脉区域受累和中线移位等指标,开发了一种高度准确、用户友好的列线图,用于预测LHI患者的院内死亡率。该列线图为未来关于LHI患者预后和死亡预防的研究提供了有价值的参考资料,同时解决了先前研究的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c599/11231922/ed5ab2cad9f9/fneur-15-1398142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验