Department of Computer Science, Sapienza University of Rome, 00185, Italy.
Gatsby Computational Neuroscience Unit, University College London, W1T 4JG, United-Kingdom.
Bioinformatics. 2024 Jul 1;40(7). doi: 10.1093/bioinformatics/btae405.
Identifying the binding sites of antibodies is essential for developing vaccines and synthetic antibodies. In this article, we investigate the optimal representation for predicting the binding sites in the two molecules and emphasize the importance of geometric information.
Specifically, we compare different geometric deep learning methods applied to proteins' inner (I-GEP) and outer (O-GEP) structures. We incorporate 3D coordinates and spectral geometric descriptors as input features to fully leverage the geometric information. Our research suggests that different geometrical representation information is useful for different tasks. Surface-based models are more efficient in predicting the binding of the epitope, while graph models are better in paratope prediction, both achieving significant performance improvements. Moreover, we analyze the impact of structural changes in antibodies and antigens resulting from conformational rearrangements or reconstruction errors. Through this investigation, we showcase the robustness of geometric deep learning methods and spectral geometric descriptors to such perturbations.
The python code for the models, together with the data and the processing pipeline, is open-source and available at https://github.com/Marco-Peg/GEP.
确定抗体的结合位点对于开发疫苗和合成抗体至关重要。在本文中,我们研究了预测两种分子中结合位点的最佳表示方法,并强调了几何信息的重要性。
具体而言,我们比较了应用于蛋白质内部(I-GEP)和外部(O-GEP)结构的不同几何深度学习方法。我们将 3D 坐标和光谱几何描述符作为输入特征,以充分利用几何信息。我们的研究表明,不同的几何表示信息对于不同的任务是有用的。基于曲面的模型在预测表位结合方面更有效,而图模型在预测变构位方面更有效,这两种方法都显著提高了性能。此外,我们分析了由于构象重排或重建错误导致抗体和抗原的结构变化的影响。通过这项研究,我们展示了几何深度学习方法和光谱几何描述符对这些扰动的鲁棒性。
模型的 python 代码以及数据和处理管道都是开源的,可以在 https://github.com/Marco-Peg/GEP 上获得。