School of Computer, Wuhan University, Wuhan 430072, China.
BMC Bioinformatics. 2011 Aug 17;12:341. doi: 10.1186/1471-2105-12-341.
Antigen-antibody interactions are key events in immune system, which provide important clues to the immune processes and responses. In Antigen-antibody interactions, the specific sites on the antigens that are directly bound by the B-cell produced antibodies are well known as B-cell epitopes. The identification of epitopes is a hot topic in bioinformatics because of their potential use in the epitope-based drug design. Although most B-cell epitopes are discontinuous (or conformational), insufficient effort has been put into the conformational epitope prediction, and the performance of existing methods is far from satisfaction.
In order to develop the high-accuracy model, we focus on some possible aspects concerning the prediction performance, including the impact of interior residues, different contributions of adjacent residues, and the imbalanced data which contain much more non-epitope residues than epitope residues. In order to address above issues, we take following strategies. Firstly, a concept of 'thick surface patch' instead of 'surface patch' is introduced to describe the local spatial context of each surface residue, which considers the impact of interior residue. The comparison between the thick surface patch and the surface patch shows that interior residues contribute to the recognition of epitopes. Secondly, statistical significance of the distance distribution difference between non-epitope patches and epitope patches is observed, thus an adjacent residue distance feature is presented, which reflects the unequal contributions of adjacent residues to the location of binding sites. Thirdly, a bootstrapping and voting procedure is adopted to deal with the imbalanced dataset. Based on the above ideas, we propose a new method to identify the B-cell conformational epitopes from 3D structures by combining conventional features and the proposed feature, and the random forest (RF) algorithm is used as the classification engine. The experiments show that our method can predict conformational B-cell epitopes with high accuracy. Evaluated by leave-one-out cross validation (LOOCV), our method achieves the mean AUC value of 0.633 for the benchmark bound dataset, and the mean AUC value of 0.654 for the benchmark unbound dataset. When compared with the state-of-the-art prediction models in the independent test, our method demonstrates comparable or better performance.
Our method is demonstrated to be effective for the prediction of conformational epitopes. Based on the study, we develop a tool to predict the conformational epitopes from 3D structures, available at http://code.google.com/p/my-project-bpredictor/downloads/list.
抗原-抗体相互作用是免疫系统中的关键事件,为免疫过程和反应提供了重要线索。在抗原-抗体相互作用中,B 细胞产生的抗体直接结合的抗原上的特定部位被称为 B 细胞表位。由于其在基于表位的药物设计中的潜在用途,表位的鉴定是生物信息学中的一个热门话题。尽管大多数 B 细胞表位是不连续的(或构象的),但在构象表位预测方面的努力还不够,现有方法的性能远不能令人满意。
为了开发高精度模型,我们专注于可能影响预测性能的一些方面,包括内部残基的影响、相邻残基的不同贡献以及包含大量非表位残基的不平衡数据。为了解决上述问题,我们采取了以下策略。首先,引入了“厚表面斑块”的概念来代替“表面斑块”,以描述每个表面残基的局部空间上下文,同时考虑内部残基的影响。厚表面斑块与表面斑块的比较表明,内部残基有助于识别表位。其次,观察到非表位斑块和表位斑块之间距离分布差异的统计显著性,从而提出了一个相邻残基距离特征,反映了相邻残基对结合位点位置的不等贡献。第三,采用自举和投票过程来处理不平衡数据集。基于上述思想,我们提出了一种新的方法,通过结合传统特征和所提出的特征,从 3D 结构中识别 B 细胞构象表位,并使用随机森林(RF)算法作为分类引擎。实验表明,我们的方法可以高精度地预测构象 B 细胞表位。通过留一交叉验证(LOOCV)评估,我们的方法在基准绑定数据集上的平均 AUC 值为 0.633,在基准未绑定数据集上的平均 AUC 值为 0.654。与独立测试中的最新预测模型相比,我们的方法表现出相当或更好的性能。
我们的方法被证明对构象表位的预测是有效的。基于该研究,我们开发了一种从 3D 结构预测构象表位的工具,可在 http://code.google.com/p/my-project-bpredictor/downloads/list 上获得。