Yin Rongguan, Tarnsangpradit Jirameth, Gul Akhtar, Jeong Jaepil, Hu Xiaolei, Zhao Yuqi, Wu Hanshu, Li Qiqi, Fytas George, Karim Alamgir, Bockstaller Michael R, Matyjaszewski Krzysztof
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213.
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2406337121. doi: 10.1073/pnas.2406337121. Epub 2024 Jul 10.
Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.
与无机纳米粒子不同,有机纳米粒子(oNPs)具有“内部可定制性”的优势,从而能够通过引入各种功能性小分子等方式,实现物理化学特性和功能的可控变化。在本研究中,我们提出了一种独特的基于引发剂单体的微乳液方法,通过有意改变超支化或交联程度,实现对oNPs化学和机械性能的增强控制。使用阴离子助表面活性剂可得到具有卓越均匀性的oNPs。得益于引发剂单体的高引发剂浓度以及原子转移自由基聚合(ATRP)过程中保留的链端官能团,证明了oNPs作为后续表面引发ATRP的多功能大分子引发剂的能力。这促进了紧密连接的聚(甲基丙烯酸甲酯)刷状oNPs的合成。详细分析表明,极高的接枝密度(约1纳米)归因于由于超支化大分子结构而从oNPs进行的多层表面接枝。控制功能属性以及弹性性能的能力,使这种“自下而上”的大分子引发剂型oNPs合成策略成为实现具有广泛应用的功能材料的独特平台。