Department of Chemistry, Howard University, Washington, DC 20059, USA.
Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
Molecules. 2023 May 30;28(11):4444. doi: 10.3390/molecules28114444.
Structurally well-defined polymer-grafted nanoparticle hybrids are highly sought after for a variety of applications, such as antifouling, mechanical reinforcement, separations, and sensing. Herein, we report the synthesis of poly(methyl methacrylate) grafted- and poly(styrene) grafted-BaTiO nanoparticles using activator regeneration via electron transfer (ARGET ATRP) with a sacrificial initiator, atom transfer radical polymerization (normal ATRP), and ATRP with sacrificial initiator, to understand the role of the polymerization procedure in influencing the structure of nanoparticle hybrids. Irrespective of the polymerization procedure adopted for the synthesis of nanoparticle hybrids, we noticed PS grafted on the nanoparticles showed moderation in molecular weight and graft density (ranging from 30,400 to 83,900 g/mol and 0.122 to 0.067 chain/nm) compared to PMMA-grafted nanoparticles (ranging from 44,620 to 230,000 g/mol and 0.071 to 0.015 chain/nm). Reducing the polymerization time during ATRP has a significant impact on the molecular weight of polymer brushes grafted on the nanoparticles. PMMA-grafted nanoparticles synthesized using ATRP had lower graft density and considerably higher molecular weight compared to PS-grafted nanoparticles. However, the addition of a sacrificial initiator during ATRP resulted in moderation of the molecular weight and graft density of PMMA-grafted nanoparticles. The use of a sacrificial initiator along with ARGET offered the best control in achieving lower molecular weight and narrow dispersity for both PS (37,870 g/mol and PDI of 1.259) and PMMA (44,620 g/mol and PDI of 1.263) nanoparticle hybrid systems.
结构明确的聚合物接枝纳米粒子杂化材料因其在各种应用中的优异性能而备受关注,例如抗污、机械增强、分离和传感等。本文通过使用牺牲引发剂的电子转移(ARGET ATRP)、原子转移自由基聚合(正常 ATRP)和带有牺牲引发剂的 ATRP,合成了聚(甲基丙烯酸甲酯)接枝和聚(苯乙烯)接枝-BaTiO3 纳米粒子,以了解聚合程序在影响纳米粒子杂化材料结构方面的作用。无论采用哪种聚合程序来合成纳米粒子杂化材料,我们都注意到 PS 接枝在纳米粒子上的分子量和接枝密度适中(范围从 30400 到 83900g/mol 和 0.122 到 0.067 链/nm),与 PMMA 接枝纳米粒子相比(范围从 44620 到 230000g/mol 和 0.071 到 0.015 链/nm)。在 ATRP 中缩短聚合时间对接枝在纳米粒子上的聚合物刷的分子量有显著影响。使用 ATRP 合成的 PMMA 接枝纳米粒子的接枝密度较低,分子量明显高于 PS 接枝纳米粒子。然而,在 ATRP 中添加牺牲引发剂会使 PMMA 接枝纳米粒子的分子量和接枝密度适中。使用牺牲引发剂与 ARGET 一起,可以在 PS(37870g/mol 和 PDI 为 1.259)和 PMMA(44620g/mol 和 PDI 为 1.263)纳米粒子杂化系统中实现更好的分子量和更窄的分散度控制。