Cytocast Hungary Kft, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
Cytocast Hungary Kft, Budapest, Hungary.
Curr Opin Struct Biol. 2024 Oct;88:102883. doi: 10.1016/j.sbi.2024.102883. Epub 2024 Jul 9.
Interactions between thousands of proteins define cells' protein-protein interaction (PPI) network. Some of these interactions lead to the formation of protein complexes. It is challenging to identify a protein complex in a haystack of protein-protein interactions, and it is even more difficult to predict all protein complexes of the complexome. Simulations and machine learning approaches try to crack these problems by looking at the PPI network or predicted protein structures. Clustering of PPI networks led to the first protein complex predictions, while most recently, atomistic models of protein complexes and deep-learning-based structure prediction methods have also emerged. The simulation of PPI level interactions even enables the quantitative prediction of protein complexes. These methods, the required data sources, and their potential future developments are discussed in this review.
数千种蛋白质的相互作用定义了细胞的蛋白质-蛋白质相互作用(PPI)网络。其中一些相互作用导致了蛋白质复合物的形成。在蛋白质-蛋白质相互作用的“大杂烩”中识别蛋白质复合物具有挑战性,更不用说预测整个复合物组中的所有蛋白质复合物了。模拟和机器学习方法试图通过查看 PPI 网络或预测的蛋白质结构来解决这些问题。PPI 网络的聚类导致了第一批蛋白质复合物的预测,而最近,蛋白质复合物的原子模型和基于深度学习的结构预测方法也相继出现。PPI 水平相互作用的模拟甚至可以实现蛋白质复合物的定量预测。本文综述了这些方法、所需的数据源及其潜在的未来发展。