Suppr超能文献

深度学习在蛋白质-蛋白质相互作用研究中的最新进展:综述

Recent advances in deep learning for protein-protein interaction: a review.

作者信息

Cui Jiafu, Yang Siqi, Yi Litai, Xi Qilemuge, Yang Dezhi, Zuo Yongchun

机构信息

Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China.

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.

出版信息

BioData Min. 2025 Jun 16;18(1):43. doi: 10.1186/s13040-025-00457-6.

Abstract

Deep learning, a cornerstone of artificial intelligence, is driving rapid advancements in computational biology. Protein-protein interactions (PPIs) are fundamental regulators of biological functions. With the inclusion of deep learning in PPI research, the field is undergoing transformative changes. Therefore, there is an urgent need for a comprehensive review and assessment of recent developments to improve analytical methods and open up a wider range of biomedical applications. This review meticulously assesses deep learning progress in PPI prediction from 2021 to 2025. We evaluate core architectures (GNNs, CNNs, RNNs) and pioneering approaches-attention-driven Transformers, multi-task frameworks, multimodal integration of sequence and structural data, transfer learning via BERT and ESM, and autoencoders for interaction characterization. Moreover, we examined enhanced algorithms for dealing with data imbalances, variations, and high-dimensional feature sparsity, as well as industry challenges (including shifting protein interactions, interactions with non-model organisms, and rare or unannotated protein interactions), and offered perspectives on the future of the field. In summary, this review systematically summarizes the latest advances and existing challenges in deep learning in the field of protein interaction analysis, providing a valuable reference for researchers in the fields of computational biology and deep learning.

摘要

深度学习作为人工智能的基石,正在推动计算生物学的快速发展。蛋白质-蛋白质相互作用(PPIs)是生物功能的基本调节因子。随着深度学习被纳入PPI研究领域,该领域正在经历变革性变化。因此,迫切需要对近期的发展进行全面回顾和评估,以改进分析方法并开拓更广泛的生物医学应用。本综述精心评估了2021年至2025年深度学习在PPI预测方面的进展。我们评估了核心架构(图神经网络、卷积神经网络、循环神经网络)以及开创性方法——注意力驱动的Transformer、多任务框架、序列和结构数据的多模态整合、通过BERT和ESM进行迁移学习以及用于相互作用表征的自动编码器。此外,我们研究了用于处理数据不平衡、变化和高维特征稀疏性的增强算法,以及行业挑战(包括不断变化的蛋白质相互作用、与非模式生物的相互作用以及罕见或未注释的蛋白质相互作用),并对该领域的未来发展提供了展望。总之,本综述系统地总结了蛋白质相互作用分析领域深度学习的最新进展和现有挑战,为计算生物学和深度学习领域的研究人员提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ba/12168265/7861fa3e0e0e/13040_2025_457_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验