Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.
Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal.
J Clin Periodontol. 2024 Oct;51(10):1342-1358. doi: 10.1111/jcpe.14037. Epub 2024 Jul 10.
To identify new biomarkers to detect untreated and treated periodontitis in gingival crevicular fluid (GCF) using sequential window acquisition of all theoretical mass spectra (SWATH-MS).
GCF samples were collected from 44 periodontally healthy subjects and 40 with periodontitis (Stages III-IV). In the latter, 25 improved clinically 2 months after treatment. Samples were analysed using SWATH-MS, and proteins were identified by the UniProt human-specific database. The diagnostic capability of the proteins was determined with generalized additive models to distinguish the three clinical conditions.
In the untreated periodontitis vs. periodontal health modelling, five proteins showed excellent or good bias-corrected (bc)-sensitivity/bc-specificity values of >80%. These were GAPDH, ZG16B, carbonic anhydrase 1, plasma protease inhibitor C1 and haemoglobin subunit beta. GAPDH with MMP-9, MMP-8, zinc-α-2-glycoprotein and neutrophil gelatinase-associated lipocalin and ZG16B with cornulin provided increased bc-sensitivity/bc-specificity of >95%. For distinguishing treated periodontitis vs. periodontal health, most of these proteins and their combinations revealed a predictive ability similar to previous modelling. No model obtained relevant results to differentiate between periodontitis conditions.
New single and dual GCF protein biomarkers showed outstanding results in discriminating untreated and treated periodontitis from periodontal health. Periodontitis conditions were indistinguishable. Future research must validate these findings.
使用序贯窗口采集所有理论质谱(SWATH-MS)技术,在龈沟液(GCF)中鉴定用于检测未经治疗和治疗的牙周炎的新生物标志物。
从 44 名牙周健康受试者和 40 名牙周炎(III-IV 期)患者中采集 GCF 样本。后者中 25 名患者在治疗后 2 个月临床改善。使用 SWATH-MS 分析样本,通过 UniProt 人类特定数据库鉴定蛋白质。使用广义加性模型确定蛋白质的诊断能力,以区分三种临床情况。
在未经治疗的牙周炎与牙周健康建模中,有 5 种蛋白质的偏置校正(bc)敏感性/bc 特异性>80%,表现出优异或良好。这些蛋白质是 GAPDH、ZG16B、碳酸酐酶 1、血浆蛋白酶抑制剂 C1 和血红蛋白亚基β。GAPDH 与 MMP-9、MMP-8、锌-α-2-糖蛋白和中性粒细胞明胶酶相关脂质运载蛋白,以及 ZG16B 与角蛋白,提供了>95%的 bc 敏感性/bc 特异性。为了区分治疗后的牙周炎与牙周健康,这些蛋白质及其组合中的大多数都显示出与之前建模相似的预测能力。没有模型获得可区分牙周炎状况的相关结果。
新的单一和双重 GCF 蛋白质生物标志物在区分未经治疗和治疗的牙周炎与牙周健康方面表现出色。牙周炎状况无法区分。未来的研究必须验证这些发现。