Suppr超能文献

基于综合生物信息学分析探讨白塞病静脉血栓栓塞的有效生物标志物。

Exploration of effective biomarkers for venous thrombosis embolism in Behçet's disease based on comprehensive bioinformatics analysis.

机构信息

Division of Vascular Surgery, Department of General Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China.

Department of Intervention Vascular, Hefei Hospital of Anhui Medical University, Hefei, 230000, China.

出版信息

Sci Rep. 2024 Jul 10;14(1):15884. doi: 10.1038/s41598-024-66973-3.

Abstract

Behçet's disease (BD) is a multifaceted autoimmune disorder affecting multiple organ systems. Vascular complications, such as venous thromboembolism (VTE), are highly prevalent, affecting around 50% of individuals diagnosed with BD. This study aimed to identify potential biomarkers for VTE in BD patients. Three microarray datasets (GSE209567, GSE48000, GSE19151) were retrieved for analysis. Differentially expressed genes (DEGs) associated with VTE in BD were identified using the Limma package and weighted gene co-expression network analysis (WGCNA). Subsequently, potential diagnostic genes were explored through protein-protein interaction (PPI) network analysis and machine learning algorithms. A receiver operating characteristic (ROC) curve and a nomogram were constructed to evaluate the diagnostic performance for VTE in BD patients. Furthermore, immune cell infiltration analyses and single-sample gene set enrichment analysis (ssGSEA) were performed to investigate potential underlying mechanisms. Finally, the efficacy of listed drugs was assessed based on the identified signature genes. The limma package and WGCNA identified 117 DEGs related to VTE in BD. A PPI network analysis then selected 23 candidate hub genes. Four DEGs (E2F1, GATA3, HDAC5, and MSH2) were identified by intersecting gene sets from three machine learning algorithms. ROC analysis and nomogram construction demonstrated high diagnostic accuracy for these four genes (AUC: 0.816, 95% CI: 0.723-0.909). Immune cell infiltration analysis revealed a positive correlation between dysregulated immune cells and the four hub genes. ssGSEA provided insights into potential mechanisms underlying VTE development and progression in BD patients. Additionally, therapeutic agent screening identified potential drugs targeting the four hub genes. This study employed a systematic approach to identify four potential hub genes (E2F1, GATA3, HDAC5, and MSH2) and construct a nomogram for VTE diagnosis in BD. Immune cell infiltration analysis revealed dysregulation, suggesting potential macrophage involvement in VTE development. ssGSEA provided insights into potential mechanisms underlying BD-induced VTE, and potential therapeutic agents were identified.

摘要

贝赫切特病(BD)是一种影响多器官系统的多方面自身免疫性疾病。血管并发症,如静脉血栓栓塞症(VTE),非常普遍,约 50%的 BD 患者受其影响。本研究旨在确定 BD 患者 VTE 的潜在生物标志物。检索了三个微阵列数据集(GSE209567、GSE48000、GSE19151)进行分析。使用 Limma 包和加权基因共表达网络分析(WGCNA)鉴定与 BD 中 VTE 相关的差异表达基因(DEG)。随后,通过蛋白质-蛋白质相互作用(PPI)网络分析和机器学习算法探索潜在的诊断基因。构建受试者工作特征(ROC)曲线和列线图,以评估 BD 患者 VTE 的诊断性能。此外,进行免疫细胞浸润分析和单样本基因集富集分析(ssGSEA),以研究潜在的潜在机制。最后,根据鉴定的特征基因评估上市药物的疗效。limma 包和 WGCNA 鉴定出 117 个与 BD 中 VTE 相关的 DEG。然后,PPI 网络分析选择了 23 个候选枢纽基因。通过三个机器学习算法的基因集交集,确定了 4 个 DEG(E2F1、GATA3、HDAC5 和 MSH2)。ROC 分析和列线图构建表明这四个基因具有较高的诊断准确性(AUC:0.816,95%CI:0.723-0.909)。免疫细胞浸润分析表明,失调的免疫细胞与四个枢纽基因呈正相关。ssGSEA 提供了 BD 患者 VTE 发展和进展潜在机制的见解。此外,治疗药物筛选确定了针对四个枢纽基因的潜在药物。本研究采用系统方法鉴定了四个潜在的枢纽基因(E2F1、GATA3、HDAC5 和 MSH2),并构建了一个用于 BD 中 VTE 诊断的列线图。免疫细胞浸润分析表明失调,提示巨噬细胞可能参与 VTE 的发生。ssGSEA 提供了 BD 诱导的 VTE 潜在机制的见解,并确定了潜在的治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b7b/11236978/9a017cf13389/41598_2024_66973_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验