Masupha Teboho Elisa, Moeletsi Mokhele Edmond, Tsubo Mitsuru
Agricultural Research Council - Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa.
Department of Agriculture and Animal Health, University of South Africa, PO Box 392, Unisa 0003, South Africa.
iScience. 2024 May 31;27(7):110066. doi: 10.1016/j.isci.2024.110066. eCollection 2024 Jul 19.
In light of the increasing vulnerability to drought occurrences and the heightened impact of drought-related disasters on numerous communities, it is imperative for drought-sensitive sectors to adopt proactive measures. This involves the implementation of early warning systems to effectively mitigate potential risks. Guided by Toulmin's model of argumentation, this research proposes a framework of eight interconnected modules introducing Fourth Industrial Revolution technologies to enhance drought early warning capabilities. The framework emphasizes the Internet of Things, drones, big data analytics, and deep learning for real-time monitoring and accurate drought forecasts. Another key component is the role of natural language processing in analyzing data from unstructured sources, such as social media, and reviews, essential for improving alerts, dissemination, and interoperability. While the framework optimizes resource use in agriculture, water, and the environment, overcoming impending limitations is crucial; hence, practical implementation and amendment of policies are necessary.
鉴于干旱发生的脆弱性不断增加,以及与干旱相关的灾害对众多社区的影响日益加剧,对干旱敏感的部门必须采取积极措施。这包括实施预警系统以有效降低潜在风险。以图尔敏论证模型为指导,本研究提出了一个由八个相互关联的模块组成的框架,引入第四次工业革命技术以增强干旱预警能力。该框架强调物联网、无人机、大数据分析和深度学习,以进行实时监测和准确的干旱预测。另一个关键组成部分是自然语言处理在分析来自非结构化来源(如社交媒体和评论)的数据方面的作用,这对于改进警报、传播和互操作性至关重要。虽然该框架优化了农业、水和环境方面的资源利用,但克服即将出现的限制至关重要;因此,实际实施和政策修订是必要的。