Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
Institute of Health and Neurodevelopment, School of Psychology, Aston University, Birmingham, UK.
Hum Brain Mapp. 2024 Jul 15;45(10):e26746. doi: 10.1002/hbm.26746.
The human brain exhibits spatio-temporally complex activity even in the absence of external stimuli, cycling through recurring patterns of activity known as brain states. Thus far, brain state analysis has primarily been restricted to unimodal neuroimaging data sets, resulting in a limited definition of state and a poor understanding of the spatial and temporal relationships between states identified from different modalities. Here, we applied hidden Markov model (HMM) to concurrent electroencephalography-functional magnetic resonance imaging (EEG-fMRI) eyes open (EO) and eyes closed (EC) resting-state data, training models on the EEG and fMRI data separately, and evaluated the models' ability to distinguish dynamics between the two rest conditions. Additionally, we employed a general linear model approach to identify the BOLD correlates of the EEG-defined states to investigate whether the fMRI data could be used to improve the spatial definition of the EEG states. Finally, we performed a sliding window-based analysis on the state time courses to identify slower changes in the temporal dynamics, and then correlated these time courses across modalities. We found that both models could identify expected changes during EC rest compared to EO rest, with the fMRI model identifying changes in the activity and functional connectivity of visual and attention resting-state networks, while the EEG model correctly identified the canonical increase in alpha upon eye closure. In addition, by using the fMRI data, it was possible to infer the spatial properties of the EEG states, resulting in BOLD correlation maps resembling canonical alpha-BOLD correlations. Finally, the sliding window analysis revealed unique fractional occupancy dynamics for states from both models, with a selection of states showing strong temporal correlations across modalities. Overall, this study highlights the efficacy of using HMMs for brain state analysis, confirms that multimodal data can be used to provide more in-depth definitions of state and demonstrates that states defined across different modalities show similar temporal dynamics.
人类大脑即使在没有外部刺激的情况下也会表现出时空复杂的活动,循环通过称为脑状态的活动模式。迄今为止,脑状态分析主要限于单模态神经影像学数据集,导致状态的定义有限,并且对不同模态识别的状态之间的空间和时间关系理解不足。在这里,我们将隐马尔可夫模型(HMM)应用于同时进行的脑电图-功能磁共振成像(EEG-fMRI)睁眼(EO)和闭眼(EC)静息状态数据,分别对 EEG 和 fMRI 数据进行建模,并评估模型区分两种静息状态之间动力学的能力。此外,我们采用了广义线性模型方法来识别 EEG 定义状态的 BOLD 相关性,以研究 fMRI 数据是否可用于改善 EEG 状态的空间定义。最后,我们对状态时间过程进行了基于滑动窗口的分析,以识别时间动态中的较慢变化,然后在模态之间对这些时间过程进行了相关分析。我们发现,与 EO 休息相比,两种模型都可以识别 EC 休息期间的预期变化,fMRI 模型识别了视觉和注意力静息状态网络的活动和功能连接的变化,而 EEG 模型则正确识别了闭眼时α波的增加。此外,通过使用 fMRI 数据,可以推断 EEG 状态的空间属性,从而得到类似于经典α-BOLD 相关性的 BOLD 相关图。最后,滑动窗口分析揭示了两种模型的状态的独特分数占用动态,选择的状态在模态之间显示出很强的时间相关性。总体而言,这项研究强调了使用 HMM 进行脑状态分析的有效性,证实了多模态数据可用于提供更深入的状态定义,并表明不同模态定义的状态显示出相似的时间动态。