Suppr超能文献

α波功率的波动:双峰性、连通性与神经团模型。

The fluctuations of alpha power: Bimodalities, connectivity, and neural mass models.

作者信息

Cabrera-Álvarez Jesús, Del Cerro-León Alberto, Carvajal Blanca P, Carrasco-Gómez Martín, Alexandersen Christoffer G, Bruña Ricardo, Maestú Fernando, Susi Gianluca

机构信息

Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain.

Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

Imaging Neurosci (Camb). 2025 Jul 2;3. doi: 10.1162/IMAG.a.64. eCollection 2025.

Abstract

The alpha rhythm is a hallmark of electrophysiological resting-state brain activity, that serves as a biomarker in health and disease. Alpha power is far from uniform over time, exhibiting dynamic fluctuations. The likelihood of those power values can be captured by a decreasing exponential function, which in certain cases becomes bimodal. While alpha rhythm is usually evaluated through the averaged power spectra across entire recordings, its dynamic fluctuations have received less attention. In this study, we investigate the dynamic nature of alpha power, its relationship with functional connectivity (FC) within the default mode network (DMN), and the ability of the Jansen-Rit (JR) neural mass model to replicate these fluctuations. Using MRI and MEG data from 42 participants in resting state with eyes-closed and eyes-open, we evaluated the shape of the exponential distributions for alpha power fluctuations, and their relationship with other spectral variables as frequency, power, and the aperiodic exponent. Additionally, we assessed the temporal relationship between alpha power and FC using phase-based (ciPLV) and amplitude-based (cAEC) metrics. Finally, we employed diffusion-weighted MRI to construct brain network models incorporating JR neural masses to reproduce and characterize alpha fluctuations. Our results indicate that alpha power predominantly follows unimodal exponential distributions, with bimodalities associated to high-power in posterior regions. FC analyses revealed that ciPLV and cAEC were directly correlated with alpha power within the DMN in alpha and beta bands, whereas only theta-band ciPLV showed an inverse relationship with alpha power. JR model simulations suggested that post- supercritical fixed points better replicated alpha power fluctuations compared to limit cycle parameterizations and pre-saddle node fixed points. These results deepen our understanding of the dynamics of alpha rhythm and its intricate relationship with FC patterns, offering novel insights to refine biologically plausible brain simulations and advance computational models of neural dynamics.

摘要

阿尔法节律是静息态脑电生理活动的一个标志,可作为健康和疾病的生物标志物。阿尔法功率随时间远非均匀分布,呈现动态波动。这些功率值的可能性可以通过递减指数函数来捕捉,在某些情况下该函数会变为双峰的。虽然阿尔法节律通常通过整个记录的平均功率谱来评估,但其动态波动受到的关注较少。在本研究中,我们调查了阿尔法功率的动态特性、其与默认模式网络(DMN)内功能连接性(FC)的关系,以及扬森 - 里特(JR)神经团模型复制这些波动的能力。使用42名参与者闭眼和睁眼静息状态下的MRI和MEG数据,我们评估了阿尔法功率波动的指数分布形状,以及它们与频率、功率和非周期指数等其他频谱变量的关系。此外,我们使用基于相位(ciPLV)和基于幅度(cAEC)的指标评估了阿尔法功率与FC之间的时间关系。最后,我们采用扩散加权MRI构建包含JR神经团的脑网络模型,以再现和表征阿尔法波动。我们的结果表明,阿尔法功率主要遵循单峰指数分布,双峰性与后部区域的高功率相关。FC分析显示,ciPLV和cAEC在阿尔法和贝塔频段与DMN内的阿尔法功率直接相关,但只有theta频段的ciPLV与阿尔法功率呈负相关。JR模型模拟表明,与极限环参数化和鞍前节点固定点相比,超临界后固定点能更好地复制阿尔法功率波动。这些结果加深了我们对阿尔法节律动态特性及其与FC模式复杂关系的理解,为完善具有生物学合理性的脑模拟和推进神经动力学计算模型提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33e/12330861/ef1bb2b94e4f/IMAG.a.64_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验