Suppr超能文献

联合多模态弥散加权成像和形态学参数检测宫颈癌淋巴结转移。

Combining multimodal diffusion-weighted imaging and morphological parameters for detecting lymph node metastasis in cervical cancer.

机构信息

Department of Radiology, Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China.

出版信息

Abdom Radiol (NY). 2024 Dec;49(12):4574-4583. doi: 10.1007/s00261-024-04494-3. Epub 2024 Jul 11.

Abstract

BACKGROUND

Accurate detection of lymph node metastasis (LNM) is crucial for determining the tumor stage, selecting optimal treatment, and estimating the prognosis for cervical cancer. This study aimed to assess the diagnostic efficacy of multimodal diffusion-weighted imaging (DWI) and morphological parameters alone or in combination, for detecting LNM in cervical cancer.

METHODS

In this prospective study, we enrolled consecutive cervical cancer patients who received multimodal DWI (conventional DWI, intravoxel incoherent motion DWI, and diffusion kurtosis imaging) before treatment from June 2022 to June 2023. The largest lymph node (LN) observed on each side on imaging was matched with that detected on pathology to improve the accuracy of LN matching. Comparison of the diffusion and morphological parameters of LNs and the primary tumor between the positive and negative LN groups. A combined diagnostic model was constructed using multivariate logistic regression, and the diagnostic performance was evaluated using receiver operating characteristic curves.

RESULTS

A total of 93 cervical cancer patients were enrolled: 35 with LNM (48 positive LNs were collected), and 58 without LNM (116 negative LNs were collected). The area under the curve (AUC) values for the apparent diffusion coefficient, diffusion coefficient, mean diffusivity, mean kurtosis, long-axis diameter, short-axis diameter of LNs, and the largest primary tumor diameter were 0.716, 0.720, 0.716, 0.723, 0.726, 0.798, and 0.744, respectively. Independent risk factors included the diffusion coefficient, mean kurtosis, short-axis diameter of LNs, and the largest primary tumor diameter. The AUC value of the combined model based on the independent risk factors was 0.920, superior to the AUC values of all the parameters mentioned above.

CONCLUSION

Combining multimodal DWI and morphological parameters improved the diagnostic efficacy for detecting cervical cancer LNM than using either alone.

摘要

背景

准确检测淋巴结转移(LNM)对于确定肿瘤分期、选择最佳治疗方案和评估宫颈癌预后至关重要。本研究旨在评估多模态磁共振扩散加权成像(DWI)及其形态学参数单独或联合用于检测宫颈癌 LNM 的诊断效能。

方法

本前瞻性研究纳入了 2022 年 6 月至 2023 年 6 月期间接受治疗前多模态 DWI(常规 DWI、体素内不相干运动 DWI 和扩散峰度成像)的连续宫颈癌患者。在影像学上观察到的每侧最大淋巴结(LN)与病理学上检测到的 LN 相匹配,以提高 LN 匹配的准确性。比较 LN 和原发肿瘤的扩散和形态参数在阳性和阴性 LN 组之间的差异。使用多变量逻辑回归构建联合诊断模型,并通过受试者工作特征曲线评估诊断性能。

结果

共纳入 93 例宫颈癌患者:35 例 LNM(共收集 48 个阳性 LN),58 例无 LNM(共收集 116 个阴性 LN)。LN 的表观扩散系数、扩散系数、平均扩散系数、平均峰度、长轴直径、短轴直径和最大原发肿瘤直径的曲线下面积(AUC)值分别为 0.716、0.720、0.716、0.723、0.726、0.798 和 0.744。独立危险因素包括扩散系数、平均峰度、LN 短轴直径和最大原发肿瘤直径。基于独立危险因素的联合模型的 AUC 值为 0.920,优于上述所有参数的 AUC 值。

结论

与单独使用相比,联合多模态 DWI 和形态学参数可提高检测宫颈癌 LNM 的诊断效能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验