Aftabuzzaman Md, Zhou Haoran, Kim Saehyun, Yi Jaekyung, Park Sarah S, Kim Youn Soo, Kim Hwan Kyu
Global GET-Future Lab., Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea.
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu Pohang, Gyeongbuk, Republic of Korea.
Nanoscale. 2024 Jul 25;16(29):13874-13884. doi: 10.1039/d4nr00949e.
Chemically synthesized PEDOT (poly(3,4-ethylenedioxythiophene)) nanomaterials, with various nanostructured morphologies as well as different intrinsic electrical conductivities and crystallinities, were compared as electrocatalysts for Co(III) reduction in dye-sensitized solar cells (DSSCs). Electrochemical parameters, charge transfer resistance toward the electrode/electrolyte interface, catalytic activity for Co(III)-reduction, and diffusion of cobalt redox species greatly depend on the morphology, crystallinity, and intrinsic electrical conductivity of the chemically synthesized PEDOTs and optimization of the fabrication procedure for counter electrodes. The PEDOT counter electrode, fabricated by spin coating a DMSO-dispersed PEDOT solution with an ordered 1D structure and nanosized fibers averaging 70 nm in diameter and an electrical conductivity of ∼16 S cm, exhibits the lowest charge transfer resistance, highest diffusion for a cobalt redox mediator and superior electrocatalytic performance compared to a traditional Pt-counter electrode. The photovoltaic performance of the DSSC using chemically synthesized PEDOT exceeds that of a Pt-electrode device because of the enhanced current density, which is directly related to the superior electrocatalytic ability of PEDOT for Co(III)-reduction. This simple spin-coated counter electrode prepared using cheap and scalable chemically synthesized PEDOT can be a potential alternative to the expensive Pt-counter electrode for cobalt and other redox electrolytes in DSSCs and various flexible electronic devices.
对化学合成的聚(3,4-乙撑二氧噻吩)(PEDOT)纳米材料进行了比较,这些材料具有各种纳米结构形态以及不同的本征电导率和结晶度,用作染料敏化太阳能电池(DSSC)中钴(III)还原的电催化剂。电化学参数、电极/电解质界面的电荷转移电阻、钴(III)还原的催化活性以及钴氧化还原物种的扩散,在很大程度上取决于化学合成的PEDOT的形态、结晶度和本征电导率以及对电极制备工艺的优化。通过旋涂具有有序一维结构且平均直径为70nm、电导率约为16S/cm的二甲基亚砜分散的PEDOT溶液制备的PEDOT对电极,与传统的铂对电极相比,表现出最低的电荷转移电阻、钴氧化还原介质的最高扩散率和优异的电催化性能。由于电流密度的提高,使用化学合成的PEDOT的DSSC的光伏性能超过了铂电极器件,这与PEDOT对钴(III)还原的优异电催化能力直接相关。这种使用廉价且可扩展的化学合成PEDOT制备的简单旋涂对电极,对于DSSC和各种柔性电子器件中的钴及其他氧化还原电解质而言,可能是昂贵的铂对电极的潜在替代品。